Kantor–Koecher–Tits construction
From HandWiki
In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra, introduced by Jacques Tits (1962), Kantor (1964), and Koecher (1967). If J is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on J + J + Inner(J), the sum of 2 copies of J and the Lie algebra of inner derivations of J.
When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133.
The Kantor–Koecher–Tits construction was used by (Kac 1977) to classify the finite-dimensional simple Jordan superalgebras.
References
- Jacobson, Nathan (1968), Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, 39, Providence, R.I.: American Mathematical Society, ISBN 082184640X, https://books.google.com/books?id=aAGWAwAAQBAJ
- Kac, Victor G (1977), "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras", Communications in Algebra 5 (13): 1375–1400, doi:10.1080/00927877708822224, ISSN 0092-7872
- Kantor, I. L. (1964), "Classification of irreducible transitive differential groups", Doklady Akademii Nauk SSSR 158: 1271–4, ISSN 0002-3264
- Koecher, Max (1967), "Imbedding of Jordan algebras into Lie algebras. I", American Journal of Mathematics 89 (3): 787–816, doi:10.2307/2373242, ISSN 0002-9327
- Tits, Jacques (1962), "Une classe d'algèbres de Lie en relation avec les algèbres de Jordan", Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indagationes Mathematicae 24: 530–5, doi:10.1016/S1385-7258(62)50051-6, https://core.ac.uk/download/pdf/82272658.pdf
Original source: https://en.wikipedia.org/wiki/Kantor–Koecher–Tits construction.
Read more |