Kantorovich theorem

From HandWiki
Short description: About the convergence of Newton's method

The Kantorovich theorem, or Newton–Kantorovich theorem, is a mathematical statement on the semi-local convergence of Newton's method. It was first stated by Leonid Kantorovich in 1948.[1][2] It is similar to the form of the Banach fixed-point theorem, although it states existence and uniqueness of a zero rather than a fixed point.[3]

Newton's method constructs a sequence of points that under certain conditions will converge to a solution x of an equation f(x)=0 or a vector solution of a system of equation F(x)=0. The Kantorovich theorem gives conditions on the initial point of this sequence. If those conditions are satisfied then a solution exists close to the initial point and the sequence converges to that point.[1][2]

Assumptions

Let Xn be an open subset and F:Xnn a differentiable function with a Jacobian F(𝐱) that is locally Lipschitz continuous (for instance if F is twice differentiable). That is, it is assumed that for any xX there is an open subset UX such that xU and there exists a constant L>0 such that for any 𝐱,𝐲U

F(𝐱)F(𝐲)L𝐱𝐲

holds. The norm on the left is the operator norm. In other words, for any vector 𝐯n the inequality

F(𝐱)(𝐯)F(𝐲)(𝐯)L𝐱𝐲𝐯

must hold.

Now choose any initial point 𝐱0X. Assume that F(𝐱0) is invertible and construct the Newton step 𝐡0=F(𝐱0)1F(𝐱0).

The next assumption is that not only the next point 𝐱1=𝐱0+𝐡0 but the entire ball B(𝐱1,𝐡0) is contained inside the set X. Let M be the Lipschitz constant for the Jacobian over this ball (assuming it exists).

As a last preparation, construct recursively, as long as it is possible, the sequences (𝐱k)k, (𝐡k)k, (αk)k according to

𝐡k=F(𝐱k)1F(𝐱k)αk=MF(𝐱k)1𝐡k𝐱k+1=𝐱k+𝐡k.

Statement

Now if α012 then

  1. a solution 𝐱* of F(𝐱*)=0 exists inside the closed ball B¯(𝐱1,𝐡0) and
  2. the Newton iteration starting in 𝐱0 converges to 𝐱* with at least linear order of convergence.

A statement that is more precise but slightly more difficult to prove uses the roots tt** of the quadratic polynomial

p(t)=(12LF(𝐱0)11)t2t+𝐡0,
t/**=2𝐡01±12α0

and their ratio

θ=t*t**=112α01+12α0.

Then

  1. a solution 𝐱* exists inside the closed ball B¯(𝐱1,θ𝐡0)B¯(𝐱0,t*)
  2. it is unique inside the bigger ball B(𝐱0,t*)
  3. and the convergence to the solution of F is dominated by the convergence of the Newton iteration of the quadratic polynomial p(t) towards its smallest root t,[4] if t0=0,tk+1=tkp(tk)p(tk), then
    𝐱k+p𝐱ktk+ptk.
  4. The quadratic convergence is obtained from the error estimate[5]
    𝐱n+1𝐱*θ2n𝐱n+1𝐱nθ2n2n𝐡0.

Corollary

In 1986, Yamamoto proved that the error evaluations of the Newton method such as Doring (1969), Ostrowski (1971, 1973),[6][7] Gragg-Tapia (1974), Potra-Ptak (1980),[8] Miel (1981),[9] Potra (1984),[10] can be derived from the Kantorovich theorem.[11]

Generalizations

There is a q-analog for the Kantorovich theorem.[12][13] For other generalizations/variations, see Ortega & Rheinboldt (1970).[14]

Applications

Oishi and Tanabe claimed that the Kantorovich theorem can be applied to obtain reliable solutions of linear programming.[15]

References

  1. 1.0 1.1 Deuflhard, P. (2004). Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics. 35. Berlin: Springer. ISBN 3-540-21099-7. 
  2. 2.0 2.1 Zeidler, E. (1985). Nonlinear Functional Analysis and its Applications: Part 1: Fixed-Point Theorems. New York: Springer. ISBN 0-387-96499-1. 
  3. Dennis, John E.; Schnabel, Robert B. (1983). "The Kantorovich and Contractive Mapping Theorems". Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs: Prentice-Hall. pp. 92–94. ISBN 0-13-627216-9. https://books.google.com/books?id=ksvJTtJCx9cC&pg=PA92. 
  4. Ortega, J. M. (1968). "The Newton-Kantorovich Theorem". Amer. Math. Monthly 75 (6): 658–660. doi:10.2307/2313800. 
  5. Gragg, W. B.; Tapia, R. A. (1974). "Optimal Error Bounds for the Newton-Kantorovich Theorem". SIAM Journal on Numerical Analysis 11 (1): 10–13. doi:10.1137/0711002. Bibcode1974SJNA...11...10G. 
  6. Ostrowski, A. M. (1971). "La method de Newton dans les espaces de Banach". C. R. Acad. Sci. Paris 27 (A): 1251–1253. 
  7. Ostrowski, A. M. (1973). Solution of Equations in Euclidean and Banach Spaces. New York: Academic Press. ISBN 0-12-530260-6. 
  8. Potra, F. A.; Ptak, V. (1980). "Sharp error bounds for Newton's process". Numer. Math. 34: 63–72. doi:10.1007/BF01463998. 
  9. Miel, G. J. (1981). "An updated version of the Kantorovich theorem for Newton's method". Computing 27 (3): 237–244. doi:10.1007/BF02237981. 
  10. Potra, F. A. (1984). "On the a posteriori error estimates for Newton's method". Beiträge zur Numerische Mathematik 12: 125–138. 
  11. Yamamoto, T. (1986). "A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions". Numerische Mathematik 49 (2–3): 203–220. doi:10.1007/BF01389624. 
  12. Rajkovic, P. M.; Stankovic, M. S.; Marinkovic, S. D. (2003). "On q-iterative methods for solving equations and systems". Novi Sad J. Math 33 (2): 127–137. 
  13. Rajković, P. M.; Marinković, S. D.; Stanković, M. S. (2005). "On q-Newton–Kantorovich method for solving systems of equations". Applied Mathematics and Computation 168 (2): 1432–1448. doi:10.1016/j.amc.2004.10.035. 
  14. Ortega, J. M.; Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. SIAM. OCLC 95021. 
  15. Oishi, S.; Tanabe, K. (2009). "Numerical Inclusion of Optimum Point for Linear Programming". JSIAM Letters 1: 5–8. doi:10.14495/jsiaml.1.5. 

Further reading

  • John H. Hubbard and Barbara Burke Hubbard: Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, Matrix Editions, ISBN 978-0-9715766-3-6 (preview of 3. edition and sample material including Kant.-thm.)
  • Yamamoto, Tetsuro (2001). "Historical Developments in Convergence Analysis for Newton's and Newton-like Methods". in Brezinski, C.; Wuytack, L.. Numerical Analysis : Historical Developments in the 20th Century. North-Holland. pp. 241–263. ISBN 0-444-50617-9.