Kato's inequality

From HandWiki
Short description: Inequality relating to the Laplace operator

In functional analysis, a subfield of mathematics, Kato's inequality is a distributional inequality for the Laplace operator or certain elliptic operators. It was proven in 1972 by the Japanese mathematician Tosio Kato.[1]

The original inequality is for some degenerate elliptic operators.[2] This article treats the special (but important) case for the Laplace operator.[3]

Inequality for the Laplace operator

Let [math]\displaystyle{ \Omega\subset \R^d }[/math] be a bounded and open set, and [math]\displaystyle{ f\in L^1_{\operatorname{loc}}(\Omega) }[/math] such that [math]\displaystyle{ \Delta f\in L^1_{\operatorname{loc}}(\Omega) }[/math]. Then the following holds[4][3]

[math]\displaystyle{ \Delta |f| \geq \operatorname{Re}\left((\operatorname{sgn}\overline f) \Delta f\right)\quad }[/math] in [math]\displaystyle{ \;\mathcal{D}'(\Omega) }[/math],

where

[math]\displaystyle{ \operatorname{sgn}\overline f=\begin{cases}\frac{\overline{f(x)}}{|f(x)|} & \text{if }f\neq 0\\ 0 & \text{if }f=0. \end{cases} }[/math][5]

[math]\displaystyle{ L^1_{\operatorname{loc}} }[/math] is the space of locally integrable functions – i.e., functions that are integrable on every compact subset of their domains of definition.

Remarks

  • Sometimes the inequality is stated in the form
[math]\displaystyle{ \Delta f^+ \geq \operatorname{Re}\left(1_{[f\geq 0]} \Delta f\right)\quad }[/math] in [math]\displaystyle{ \;\mathcal{D}'(\Omega) }[/math]
where [math]\displaystyle{ f^+=\operatorname{max}(f,0) }[/math] and [math]\displaystyle{ 1_{[f\geq 0]} }[/math] is the indicator function.
  • If [math]\displaystyle{ f }[/math] is continuous in [math]\displaystyle{ \Omega }[/math] then
[math]\displaystyle{ \Delta |f| \geq \operatorname{Re}\left((\operatorname{sgn}\overline f) \Delta f\right)\quad }[/math] in [math]\displaystyle{ \;\mathcal{D}'(\{f\neq 0\}) }[/math].[6]

Literature

References

  1. Kato, Tosio (1972). "Schrödinger operators with singular potentials". Israel Journal of Mathematics 13 (1–2): 135–148. doi:10.1007/BF02760233. 
  2. Devinatz, Allen (1979). "On an Inequality of Tosio Kato for Degenerate-Elliptic Operators". Journal of Functional Analysis 32 (3): 312–335. doi:10.1016/0022-1236(79)90043-0. 
  3. 3.0 3.1 Brezis, Haı̈m; Ponce, Augusto (2004). "Kato's inequality when Δu is a measure". Comptes Rendus Mathematique 338 (8): 599–604. doi:10.1016/j.crma.2003.12.032. http://www.numdam.org/articles/10.1016/j.crma.2003.12.032/. 
  4. Arendt, Wolfgang; ter Elst, Antonious F.M. (2019). "Kato's Inequality". Analysis and Operator Theory. Springer Optimization and Its Applications. Springer Optimization and Its Applications. 146. Cham: Springer. pp. 47–60. doi:10.1007/978-3-030-12661-2_3. ISBN 978-3-030-12660-5. 
  5. Horiuchi, Toshio (2001). "Some remarks on Kato's inequality". Journal of Inequalities and Applications 2001: 615789. doi:10.1155/S1025583401000030. 
  6. Dávila, Juan; Ponce, Augusto (2003). "Variants of Kato's inequality and removable singularities". Journal d'Analyse Mathématique 91: 143–178. doi:10.1007/BF02788785.