Kramkov's optional decomposition theorem

From HandWiki

In probability theory, Kramkov's optional decomposition theorem (or just optional decomposition theorem) is a mathematical theorem on the decomposition of a positive supermartingale [math]\displaystyle{ V }[/math] with respect to a family of equivalent martingale measures into the form

[math]\displaystyle{ V_t=V_0+(H\cdot X)_t-C_t,\quad t\geq 0, }[/math]

where [math]\displaystyle{ C }[/math] is an adapted (or optional) process.

The theorem is of particular interest for financial mathematics, where the interpretation is: [math]\displaystyle{ V }[/math] is the wealth process of a trader, [math]\displaystyle{ (H\cdot X) }[/math] is the gain/loss and [math]\displaystyle{ C }[/math] the consumption process.

The theorem was proven in 1994 by Russian mathematician Dmitry Kramkov.[1] The theorem is named after the Doob-Meyer decomposition but unlike there, the process [math]\displaystyle{ C }[/math] is no longer predictable but only adapted (which, under the condition of the statement, is the same as dealing with an optional process).

Kramkov's optional decomposition theorem

Let [math]\displaystyle{ (\Omega,\mathcal{A},\{\mathcal{F}_t\},P) }[/math] be a filtered probability space with the filtration satisfying the usual conditions.

A [math]\displaystyle{ d }[/math]-dimensional process [math]\displaystyle{ X=(X^1,\dots,X^d) }[/math] is locally bounded if there exist a sequence of stopping times [math]\displaystyle{ (\tau_n)_{n\geq 1} }[/math] such that [math]\displaystyle{ \tau_n\to \infty }[/math] almost surely if [math]\displaystyle{ n\to \infty }[/math] and [math]\displaystyle{ |X_t^i|\leq n }[/math] for [math]\displaystyle{ 1\leq i\leq d }[/math] and [math]\displaystyle{ t \leq \tau_n }[/math].

Statement

Let [math]\displaystyle{ X=(X^1,\dots,X^d) }[/math] be [math]\displaystyle{ d }[/math]-dimensional càdlàg (or RCLL) process that is locally bounded. Let [math]\displaystyle{ M(X)\neq \emptyset }[/math] be the space of equivalent local martingale measures for [math]\displaystyle{ X }[/math] and without loss of generality let us assume [math]\displaystyle{ P\in M(X) }[/math].

Let [math]\displaystyle{ V }[/math] be a positive stochastic process then [math]\displaystyle{ V }[/math] is a [math]\displaystyle{ Q }[/math]-supermartingale for each [math]\displaystyle{ Q\in M(X) }[/math] if and only if there exist an [math]\displaystyle{ X }[/math]-integrable and predictable process [math]\displaystyle{ H }[/math] and an adapted increasing process [math]\displaystyle{ C }[/math] such that

[math]\displaystyle{ V_t=V_0 + (H\cdot X)_t-C_t,\quad t\geq 0. }[/math][2][3]

Commentary

The statement is still true under change of measure to an equivalent measure.

References

  1. Kramkov, Dimitri O. (1996). "Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets". Probability Theory and Related Fields 105: 459–479. doi:10.1007/BF01191909. 
  2. Kramkov, Dimitri O. (1996). "Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets". Probability Theory and Related Fields 105: 461. doi:10.1007/BF01191909. 
  3. Delbaen, Freddy; Schachermayer, Walter (2006). The Mathematics of Arbitrage. Heidelberg: Springer Berlin. p. 31.