Kullback's inequality

From HandWiki

In information theory and statistics, Kullback's inequality is a lower bound on the Kullback–Leibler divergence expressed in terms of the large deviations rate function.[1] If P and Q are probability distributions on the real line, such that P is absolutely continuous with respect to Q, i.e. P << Q, and whose first moments exist, then [math]\displaystyle{ D_{KL}(P\parallel Q) \ge \Psi_Q^*(\mu'_1(P)), }[/math] where [math]\displaystyle{ \Psi_Q^* }[/math] is the rate function, i.e. the convex conjugate of the cumulant-generating function, of [math]\displaystyle{ Q }[/math], and [math]\displaystyle{ \mu'_1(P) }[/math] is the first moment of [math]\displaystyle{ P. }[/math]

The Cramér–Rao bound is a corollary of this result.

Proof

Let P and Q be probability distributions (measures) on the real line, whose first moments exist, and such that P << Q. Consider the natural exponential family of Q given by [math]\displaystyle{ Q_\theta(A) = \frac{\int_A e^{\theta x}Q(dx)}{\int_{-\infty}^\infty e^{\theta x}Q(dx)} = \frac{1}{M_Q(\theta)} \int_A e^{\theta x}Q(dx) }[/math] for every measurable set A, where [math]\displaystyle{ M_Q }[/math] is the moment-generating function of Q. (Note that Q0 = Q.) Then [math]\displaystyle{ D_{KL}(P\parallel Q) = D_{KL}(P\parallel Q_\theta) + \int_{\operatorname{supp}P}\left(\log\frac{\mathrm dQ_\theta}{\mathrm dQ}\right)\mathrm dP. }[/math] By Gibbs' inequality we have [math]\displaystyle{ D_{KL}(P\parallel Q_\theta) \ge 0 }[/math] so that [math]\displaystyle{ D_{KL}(P\parallel Q) \ge \int_{\operatorname{supp}P}\left(\log\frac{\mathrm dQ_\theta}{\mathrm dQ}\right)\mathrm dP = \int_{\operatorname{supp}P}\left(\log\frac{e^{\theta x}}{M_Q(\theta)}\right) P(dx) }[/math] Simplifying the right side, we have, for every real θ where [math]\displaystyle{ M_Q(\theta) \lt \infty: }[/math] [math]\displaystyle{ D_{KL}(P\parallel Q) \ge \mu'_1(P) \theta - \Psi_Q(\theta), }[/math] where [math]\displaystyle{ \mu'_1(P) }[/math] is the first moment, or mean, of P, and [math]\displaystyle{ \Psi_Q = \log M_Q }[/math] is called the cumulant-generating function. Taking the supremum completes the process of convex conjugation and yields the rate function: [math]\displaystyle{ D_{KL}(P\parallel Q) \ge \sup_\theta \left\{ \mu'_1(P) \theta - \Psi_Q(\theta) \right\} = \Psi_Q^*(\mu'_1(P)). }[/math]

Corollary: the Cramér–Rao bound

Main page: Cramér–Rao bound

Start with Kullback's inequality

Let Xθ be a family of probability distributions on the real line indexed by the real parameter θ, and satisfying certain regularity conditions. Then [math]\displaystyle{ \lim_{h\to 0} \frac {D_{KL}(X_{\theta+h} \parallel X_\theta)} {h^2} \ge \lim_{h\to 0} \frac {\Psi^*_\theta (\mu_{\theta+h})}{h^2}, }[/math]

where [math]\displaystyle{ \Psi^*_\theta }[/math] is the convex conjugate of the cumulant-generating function of [math]\displaystyle{ X_\theta }[/math] and [math]\displaystyle{ \mu_{\theta+h} }[/math] is the first moment of [math]\displaystyle{ X_{\theta+h}. }[/math]

Left side

The left side of this inequality can be simplified as follows: [math]\displaystyle{ \begin{align} \lim_{h\to 0} \frac {D_{KL}(X_{\theta+h}\parallel X_\theta)} {h^2} &=\lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \log \left( \frac{\mathrm dX_{\theta+h}}{\mathrm dX_\theta} \right) \mathrm dX_{\theta+h} \\ &=-\lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \log \left( \frac{\mathrm dX_{\theta}}{\mathrm dX_{\theta+h}} \right) \mathrm dX_{\theta+h} \\ &=-\lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \log\left( 1- \left (1-\frac{\mathrm dX_{\theta}}{\mathrm dX_{\theta+h}} \right ) \right) \mathrm dX_{\theta+h} \\ &= \lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \left[ \left( 1 - \frac{\mathrm dX_\theta}{\mathrm dX_{\theta+h}} \right) +\frac 1 2 \left( 1 - \frac{\mathrm dX_\theta}{\mathrm dX_{\theta+h}} \right) ^ 2 + o \left( \left( 1 - \frac{\mathrm dX_\theta}{\mathrm dX_{\theta+h}} \right) ^ 2 \right) \right]\mathrm dX_{\theta+h} && \text{Taylor series for } \log(1-t) \\ &= \lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \left[ \frac 1 2 \left( 1 - \frac{\mathrm dX_\theta}{\mathrm dX_{\theta+h}} \right)^2 \right]\mathrm dX_{\theta+h} \\ &= \lim_{h\to 0} \frac 1 {h^2} \int_{-\infty}^\infty \left[ \frac 1 2 \left( \frac{\mathrm dX_{\theta+h} - \mathrm dX_\theta}{\mathrm dX_{\theta+h}} \right)^2 \right]\mathrm dX_{\theta+h} \\ &= \frac 1 2 \mathcal I_X(\theta) \end{align} }[/math] which is half the Fisher information of the parameter θ.

Right side

The right side of the inequality can be developed as follows: [math]\displaystyle{ \lim_{h\to 0} \frac {\Psi^*_\theta (\mu_{\theta+h})}{h^2} = \lim_{h\to 0} \frac 1 {h^2} {\sup_t \{\mu_{\theta+h}t - \Psi_\theta(t)\} }. }[/math] This supremum is attained at a value of t=τ where the first derivative of the cumulant-generating function is [math]\displaystyle{ \Psi'_\theta(\tau) = \mu_{\theta+h}, }[/math] but we have [math]\displaystyle{ \Psi'_\theta(0) = \mu_\theta, }[/math] so that [math]\displaystyle{ \Psi''_\theta(0) = \frac{d\mu_\theta}{d\theta} \lim_{h \to 0} \frac h \tau. }[/math] Moreover, [math]\displaystyle{ \lim_{h\to 0} \frac {\Psi^*_\theta (\mu_{\theta+h})}{h^2} = \frac 1 {2\Psi''_\theta(0)}\left(\frac {d\mu_\theta}{d\theta}\right)^2 = \frac 1 {2\operatorname{Var}(X_\theta)}\left(\frac {d\mu_\theta}{d\theta}\right)^2. }[/math]

Putting both sides back together

We have: [math]\displaystyle{ \frac 1 2 \mathcal I_X(\theta) \ge \frac 1 {2\operatorname{Var}(X_\theta)}\left(\frac {d\mu_\theta}{d\theta}\right)^2, }[/math] which can be rearranged as: [math]\displaystyle{ \operatorname{Var}(X_\theta) \ge \frac{(d\mu_\theta / d\theta)^2} {\mathcal I_X(\theta)}. }[/math]

See also

Notes and references

  1. Fuchs, Aimé; Letta, Giorgio (1970). "L'inégalité de Kullback. Application à la théorie de l'estimation". Séminaire de Probabilités de Strasbourg. Séminaire de probabilités (Strasbourg) 4: 108–131. http://www.numdam.org/item?id=SPS_1970__4__108_0.