Lin–Tsien equation

From HandWiki

The Lin–Tsien equation (named after C. C. Lin and H. S. Tsien) is an integrable partial differential equation

[math]\displaystyle{ 2u_{tx}+u_xu_{xx}-u_{yy} = 0. }[/math]

Integrability of this equation follows from its being, modulo an appropriate linear change of dependent and independent variables, a potential form of the dispersionless KP equation. Namely, if [math]\displaystyle{ u }[/math] satisfies the Lin–Tsien equation, then [math]\displaystyle{ v=u_x }[/math] satisfies, modulo the said change of variables, the dispersionless KP equation. The Lin-Tsien equation admits a (3+1)-dimensional integrable generalization, see. [1]

References

  1. Sergyeyev, A. (2018). "New integrable (3+1)-dimensional systems and contact geometry". Letters in Mathematical Physics 108 (2): 359–376. doi:10.1007/s11005-017-1013-4. Bibcode2018LMaPh.108..359S.