Lindelöf hypothesis
In mathematics, the Lindelöf hypothesis is a conjecture by Finnish mathematician Ernst Leonard Lindelöf[1] about the rate of growth of the Riemann zeta function on the critical line. This hypothesis is implied by the Riemann hypothesis. It says that for any ε > 0, [math]\displaystyle{ \zeta\!\left(\frac{1}{2} + it\right)\! = O(t^\varepsilon) }[/math] as t tends to infinity (see big O notation). Since ε can be replaced by a smaller value, the conjecture can be restated as follows: for any positive ε, [math]\displaystyle{ \zeta\!\left(\frac{1}{2} + it\right)\! = o(t^\varepsilon). }[/math]
The μ function
If σ is real, then μ(σ) is defined to be the infimum of all real numbers a such that ζ(σ + iT ) = O(T a). It is trivial to check that μ(σ) = 0 for σ > 1, and the functional equation of the zeta function implies that μ(σ) = μ(1 − σ) − σ + 1/2. The Phragmén–Lindelöf theorem implies that μ is a convex function. The Lindelöf hypothesis states μ(1/2) = 0, which together with the above properties of μ implies that μ(σ) is 0 for σ ≥ 1/2 and 1/2 − σ for σ ≤ 1/2.
Lindelöf's convexity result together with μ(1) = 0 and μ(0) = 1/2 implies that 0 ≤ μ(1/2) ≤ 1/4. The upper bound of 1/4 was lowered by Hardy and Littlewood to 1/6 by applying Weyl's method of estimating exponential sums to the approximate functional equation. It has since been lowered to slightly less than 1/6 by several authors using long and technical proofs, as in the following table:
μ(1/2) ≤ | μ(1/2) ≤ | Author | |
---|---|---|---|
1/4 | 0.25 | Lindelöf[2] | Convexity bound |
1/6 | 0.1667 | Hardy & Littlewood[3][4] | |
163/988 | 0.1650 | Walfisz 1924[5] | |
27/164 | 0.1647 | Titchmarsh 1932[6] | |
229/1392 | 0.164512 | Phillips 1933[7] | |
0.164511 | Rankin 1955[8] | ||
19/116 | 0.1638 | Titchmarsh 1942[9] | |
15/92 | 0.1631 | Min 1949[10] | |
6/37 | 0.16217 | Haneke 1962[11] | |
173/1067 | 0.16214 | Kolesnik 1973[citation needed] | |
35/216 | 0.16204 | Kolesnik 1982[12] | |
139/858 | 0.16201 | Kolesnik 1985[13] | |
32/205 | 0.1561 | Huxley[14] | |
53/342 | 0.1550 | Bourgain[15] | |
13/84 | 0.1548 | Bourgain[16] |
Relation to the Riemann hypothesis
Backlund[17] (1918–1919) showed that the Lindelöf hypothesis is equivalent to the following statement about the zeros of the zeta function: for every ε > 0, the number of zeros with real part at least 1/2 + ε and imaginary part between T and T + 1 is o(log(T)) as T tends to infinity. The Riemann hypothesis implies that there are no zeros at all in this region and so implies the Lindelöf hypothesis. The number of zeros with imaginary part between T and T + 1 is known to be O(log(T)), so the Lindelöf hypothesis seems only slightly stronger than what has already been proved, but in spite of this it has resisted all attempts to prove it.
Means of powers (or moments) of the zeta function
The Lindelöf hypothesis is equivalent to the statement that [math]\displaystyle{ \frac{1}{T} \int_0^T|\zeta(1/2+it)|^{2k}\,dt = O(T^{\varepsilon}) }[/math] for all positive integers k and all positive real numbers ε. This has been proved for k = 1 or 2, but the case k = 3 seems much harder and is still an open problem.
There is a much more precise conjecture about the asymptotic behavior of the integral: it is believed that
- [math]\displaystyle{ \int_0^T|\zeta(1/2+it)|^{2k} \, dt = T\sum_{j=0}^{k^2}c_{k,j}\log(T)^{k^2-j} + o(T) }[/math]
for some constants ck,j . This has been proved by Littlewood for k = 1 and by Heath-Brown[18] for k = 2 (extending a result of Ingham[19] who found the leading term).
Country and Ghosh[20] suggested the value
- [math]\displaystyle{ \frac{42}{9!}\prod_ p \left((1-p^{-1})^4(1+4p^{-1}+p^{-2})\right) }[/math]
for the leading coefficient when k is 6, and Keating and Snaith[21] used random matrix theory to suggest some conjectures for the values of the coefficients for higher k. The leading coefficients are conjectured to be the product of an elementary factor, a certain product over primes, and the number of n × n Young tableaux given by the sequence
Other consequences
Denoting by pn the n-th prime number, let [math]\displaystyle{ g_n = p_{n + 1} - p_n.\ }[/math] A result by Albert Ingham shows that the Lindelöf hypothesis implies that, for any ε > 0,
[math]\displaystyle{ g_n\ll p_n^{1/2+\varepsilon} }[/math]
if n is sufficiently large.
A prime gap conjecture stronger than Ingham's result is Cramér's conjecture:[22][23]
[math]\displaystyle{ g_n = O\!\left((\log p_n)^2\right)\!. }[/math]
L-functions
The Riemann zeta function belongs to a more general family of functions called L-functions. In 2010, new methods to obtain sub-convexity estimates for L-functions in the PGL(2) case were given by Joseph Bernstein and Andre Reznikov[24] and in the GL(1) and GL(2) case by Akshay Venkatesh and Philippe Michel[25] and in 2021 for the GL(n) case by Paul Nelson.[26][27]
See also
Notes and references
- ↑ see (Lindelöf 1908)
- ↑ (Lindelöf 1908)
- ↑ Hardy, G. H.; Littlewood, J. E. (1923). "On Lindelöf's hypothesis concerning the Riemann zeta-function". Proc. Royal Soc. (A): 403–412.
- ↑ Hardy, G. H.; Littlewood, J. E. (1916). "Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes". Acta Mathematica 41 (0): 119–196. doi:10.1007/BF02422942. ISSN 0001-5962.
- ↑ Walfisz, Arnold (1924). "Zur Abschätzung von ζ(½ + it)". Nachr. Ges. Wiss. Göttingen, math.-phys. Klasse: 155-158.
- ↑ Titchmarsh, E. C. (1932). "On van der Corput’s method and the zeta-function of Riemann (III)". The Quarterly Journal of Mathematics os-3 (1): 133–141. doi:10.1093/qmath/os-3.1.133. ISSN 0033-5606.
- ↑ Phillips, Eric (1933). "The zeta-function of Riemann: further developments of van der Corput's method". The Quarterly Journal of Mathematics os-4 (1): 209–225. doi:10.1093/qmath/os-4.1.209. ISSN 0033-5606.
- ↑ Rankin, R. A. (1955). "Van der Corput’s method and the theory of exponent pairs". The Quarterly Journal of Mathematics 6 (1): 147–153. doi:10.1093/qmath/6.1.147. ISSN 0033-5606.
- ↑ Titchmarsh, E. C. (1942). "On the order of ζ(½+ it )". The Quarterly Journal of Mathematics os-13 (1): 11–17. doi:10.1093/qmath/os-13.1.11. ISSN 0033-5606.
- ↑ Min, Szu-Hoa (1949). "On the order of 𝜁(1/2+𝑖𝑡)". Transactions of the American Mathematical Society 65 (3): 448–472. doi:10.1090/S0002-9947-1949-0030996-6. ISSN 0002-9947.
- ↑ Haneke, W. (1963). "Verschärfung der Abschätzung von ξ(½+it)" (in German). Acta Arithmetica 8 (4): 357–430. doi:10.4064/aa-8-4-357-430. ISSN 0065-1036.
- ↑ Kolesnik, Grigori (1982-01-01). "On the order of ζ (1/2+ it ) and Δ( R )". Pacific Journal of Mathematics 98 (1): 107–122. doi:10.2140/pjm.1982.98.107. ISSN 0030-8730.
- ↑ Kolesnik, G. (1985). "On the method of exponent pairs". Acta Arithmetica 45 (2): 115-143.
- ↑ (Huxley 2002), (Huxley 2005)
- ↑ (Bourgain 2017)
- ↑ (Bourgain 2017)
- ↑ (Backlund 1918–1919)
- ↑ (Heath-Brown 1979)
- ↑ (Ingham 1928)
- ↑ (Conrey Ghosh)
- ↑ (Keating Snaith)
- ↑ Cramér, Harald (1936). "On the order of magnitude of the difference between consecutive prime numbers". Acta Arithmetica 2 (1): 23–46. doi:10.4064/aa-2-1-23-46. ISSN 0065-1036.
- ↑ Banks, William; Ford, Kevin; Tao, Terence (2023). "Large prime gaps and probabilistic models". Inventiones mathematicae 233 (3): 1471–1518. doi:10.1007/s00222-023-01199-0. ISSN 0020-9910.
- ↑ Bernstein, Joseph; Reznikov, Andre (2010-10-05). "Subconvexity bounds for triple L -functions and representation theory" (in en). Annals of Mathematics 172 (3): 1679–1718. doi:10.4007/annals.2010.172.1679. ISSN 0003-486X. http://annals.math.princeton.edu/2010/172-3/p05.
- ↑ Michel, Philippe; Venkatesh, Akshay (2010). "The subconvexity problem for GL2". Publications Mathématiques de l'IHÉS 111 (1): 171–271. doi:10.1007/s10240-010-0025-8.
- ↑ Nelson, Paul D. (2021-09-30). "Bounds for standard $L$-functions". arXiv:2109.15230 [math.NT].
- ↑ Hartnett, Kevin (2022-01-13). "Mathematicians Clear Hurdle in Quest to Decode Primes" (in en). https://www.quantamagazine.org/mathematicians-clear-hurdle-in-quest-to-decode-prime-numbers-20220113/.
- Backlund, R. (1918–1919), "Über die Beziehung zwischen Anwachsen und Nullstellen der Zeta-Funktion", Ofversigt Finska Vetensk. Soc. 61 (9), https://www.biodiversitylibrary.org/item/51075#page/359/mode/1up
- Bourgain, Jean (2017), "Decoupling, exponential sums and the Riemann zeta function", Journal of the American Mathematical Society 30 (1): 205–224, doi:10.1090/jams/860
- Conrey, J. B.; Farmer, D. W.; Keating, Jonathan P.; Rubinstein, M. O.; Snaith, N. C. (2005), "Integral moments of L-functions", Proceedings of the London Mathematical Society, Third Series 91 (1): 33–104, doi:10.1112/S0024611504015175, ISSN 0024-6115
- Conrey, J. B.; Farmer, D. W.; Keating, Jonathan P.; Rubinstein, M. O.; Snaith, N. C. (2008), "Lower order terms in the full moment conjecture for the Riemann zeta function", Journal of Number Theory 128 (6): 1516–1554, doi:10.1016/j.jnt.2007.05.013, ISSN 0022-314X
- Conrey, J. B.; Ghosh, A. (1998), "A conjecture for the sixth power moment of the Riemann zeta-function", International Mathematics Research Notices 1998 (15): 775–780, doi:10.1155/S1073792898000476, ISSN 1073-7928, Bibcode: 1998math......7187C
- Edwards, H. M. (1974), Riemann's Zeta Function, New York: Dover Publications, ISBN 978-0-486-41740-0 2001 pbk reprint
- Heath-Brown, D. R. (1979), "The fourth power moment of the Riemann zeta function", Proceedings of the London Mathematical Society, Third Series 38 (3): 385–422, doi:10.1112/plms/s3-38.3.385, ISSN 0024-6115
- Huxley, M. N. (2002), "Integer points, exponential sums and the Riemann zeta function", Number theory for the millennium, II (Urbana, IL, 2000), A K Peters, pp. 275–290
- Huxley, M. N. (2005), "Exponential sums and the Riemann zeta function. V", Proceedings of the London Mathematical Society, Third Series 90 (1): 1–41, doi:10.1112/S0024611504014959, ISSN 0024-6115
- Ingham, A. E. (1928), "Mean-Value Theorems in the Theory of the Riemann Zeta-Function", Proc. London Math. Soc. s2-27 (1): 273–300, doi:10.1112/plms/s2-27.1.273
- Ingham, A. E. (1940), "On the estimation of N(σ,T)", The Quarterly Journal of Mathematics, Second Series 11 (1): 291–292, doi:10.1093/qmath/os-11.1.201, ISSN 0033-5606, Bibcode: 1940QJMat..11..201I
- Karatsuba, Anatoly; Voronin, Sergei (1992), The Riemann zeta-function, de Gruyter Expositions in Mathematics, 5, Berlin: Walter de Gruyter & Co., ISBN 978-3-11-013170-3
- Keating, Jonathan P.; Snaith, N. C. (2000), "Random matrix theory and ζ(1/2+it)", Communications in Mathematical Physics 214 (1): 57–89, doi:10.1007/s002200000261, ISSN 0010-3616, Bibcode: 2000CMaPh.214...57K
- Lindelöf, Ernst (1908), "Quelques remarques sur la croissance de la fonction ζ(s)", Bull. Sci. Math. 32: 341–356, https://babel.hathitrust.org/cgi/pt?id=hvd.32044102908480&view=1up&seq=395&q1=lindelöf
- Motohashi, Yõichi (1995), "A relation between the Riemann zeta-function and the hyperbolic Laplacian", Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 22 (2): 299–313, ISSN 0391-173X, http://www.numdam.org/item?id=ASNSP_1995_4_22_2_299_0
- Motohashi, Yõichi (1995), "The Riemann zeta-function and the non-Euclidean Laplacian", Sugaku Expositions 8 (1): 59–87, ISSN 0898-9583
- Titchmarsh, Edward Charles (1986), The theory of the Riemann zeta-function (2nd ed.), The Clarendon Press Oxford University Press, ISBN 978-0-19-853369-6
- Hazewinkel, Michiel, ed. (2001), "L/l058960", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=L/l058960
Original source: https://en.wikipedia.org/wiki/Lindelöf hypothesis.
Read more |