Liouville–Bratu–Gelfand equation
- For Liouville's equation in differential geometry, see Liouville's equation.
In mathematics, Liouville–Bratu–Gelfand equation or Liouville's equation is a non-linear Poisson equation, named after the mathematicians Joseph Liouville,[1] Gheorghe Bratu[2] and Israel Gelfand.[3] The equation reads
- [math]\displaystyle{ \nabla^2 \psi + \lambda e^\psi = 0 }[/math]
The equation appears in thermal runaway as Frank-Kamenetskii theory, astrophysics for example, Emden–Chandrasekhar equation. This equation also describes space charge of electricity around a glowing wire[4] and describes planetary nebula.
Liouville's solution[5]
In two dimension with Cartesian Coordinates [math]\displaystyle{ (x,y) }[/math], Joseph Liouville proposed a solution in 1853 as
- [math]\displaystyle{ \lambda e^\psi (u^2 + v^2 + 1) ^2 = 2 \left[\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2\right] }[/math]
where [math]\displaystyle{ f(z)=u + i v }[/math] is an arbitrary analytic function with [math]\displaystyle{ z=x+iy }[/math]. In 1915, G.W. Walker[6] found a solution by assuming a form for [math]\displaystyle{ f(z) }[/math]. If [math]\displaystyle{ r^2=x^2+y^2 }[/math], then Walker's solution is
- [math]\displaystyle{ 8 e^{-\psi} = \lambda \left[\left(\frac{r}{a}\right)^n + \left(\frac{a}{r}\right)^n\right]^2 }[/math]
where [math]\displaystyle{ a }[/math] is some finite radius. This solution decays at infinity for any [math]\displaystyle{ n }[/math], but becomes infinite at the origin for [math]\displaystyle{ n\lt 1 }[/math] , becomes finite at the origin for [math]\displaystyle{ n=1 }[/math] and becomes zero at the origin for [math]\displaystyle{ n\gt 1 }[/math]. Walker also proposed two more solutions in his 1915 paper.
Radially symmetric forms
If the system to be studied is radially symmetric, then the equation in [math]\displaystyle{ n }[/math] dimension becomes
- [math]\displaystyle{ \psi'' + \frac{n-1}{r}\psi' + \lambda e^\psi=0 }[/math]
where [math]\displaystyle{ r }[/math] is the distance from the origin. With the boundary conditions
- [math]\displaystyle{ \psi'(0)=0, \quad \psi(1) = 0 }[/math]
and for [math]\displaystyle{ \lambda\geq 0 }[/math], a real solution exists only for [math]\displaystyle{ \lambda \in [0,\lambda_c] }[/math], where [math]\displaystyle{ \lambda_c }[/math] is the critical parameter called as Frank-Kamenetskii parameter. The critical parameter is [math]\displaystyle{ \lambda_c=0.8785 }[/math] for [math]\displaystyle{ n=1 }[/math], [math]\displaystyle{ \lambda_c=2 }[/math] for [math]\displaystyle{ n=2 }[/math] and [math]\displaystyle{ \lambda_c=3.32 }[/math] for [math]\displaystyle{ n=3 }[/math]. For [math]\displaystyle{ n=1, \ 2 }[/math], two solution exists and for [math]\displaystyle{ 3\leq n\leq 9 }[/math] infinitely many solution exists with solutions oscillating about the point [math]\displaystyle{ \lambda=2(n-2) }[/math]. For [math]\displaystyle{ n\geq 10 }[/math], the solution is unique and in these cases the critical parameter is given by [math]\displaystyle{ \lambda_c=2(n-2) }[/math]. Multiplicity of solution for [math]\displaystyle{ n=3 }[/math] was discovered by Israel Gelfand in 1963 and in later 1973 generalized for all [math]\displaystyle{ n }[/math] by Daniel D. Joseph and Thomas S. Lundgren.[7]
The solution for [math]\displaystyle{ n=1 }[/math] that is valid in the range [math]\displaystyle{ \lambda \in [0,0.8785] }[/math] is given by
- [math]\displaystyle{ \psi = -2 \ln \left[e^{-\psi_m/2}\cosh \left(\frac{\sqrt{\lambda}}{\sqrt 2}e^{-\psi_m/2}r\right)\right] }[/math]
where [math]\displaystyle{ \psi_m=\psi(0) }[/math] is related to [math]\displaystyle{ \lambda }[/math] as
- [math]\displaystyle{ e^{\psi_m/2} = \cosh \left(\frac{\sqrt{\lambda}}{\sqrt 2}e^{-\psi_m/2}\right). }[/math]
The solution for [math]\displaystyle{ n=2 }[/math] that is valid in the range [math]\displaystyle{ \lambda \in [0,2] }[/math] is given by
- [math]\displaystyle{ \psi = \ln \left[\frac{64e^{\psi_m}}{(\lambda e^{\psi_m}r^2+8)^2}\right] }[/math]
where [math]\displaystyle{ \psi_m=\psi(0) }[/math] is related to [math]\displaystyle{ \lambda }[/math] as
- [math]\displaystyle{ (\lambda e^{\psi_m}+8)^2 - 64 e^{\psi_m} =0. }[/math]
References
- ↑ Liouville, J. "Sur l’équation aux différences partielles [math]\displaystyle{ \frac{d^2\log\lambda}{dudv}\pm \frac{\lambda}{2a^2}= 0 }[/math]." Journal de mathématiques pures et appliquées (1853): 71–72. http://sites.mathdoc.fr/JMPA/PDF/JMPA_1853_1_18_A3_0.pdf
- ↑ Bratu, G. "Sur les équations intégrales non linéaires." Bulletin de la Société Mathématique de France 42 (1914): 113–142.http://archive.numdam.org/article/BSMF_1914__42__113_0.pdf
- ↑ Gelfand, I. M. "Some problems in the theory of quasilinear equations." Amer. Math. Soc. Transl 29.2 (1963): 295–381. http://www.mathnet.ru/links/aa75c5d339030f17940afb64e17793d8/rm7290.pdf
- ↑ Richardson, Owen Willans. The emission of electricity from hot bodies. Longmans, Green and Company, 1921.
- ↑ Bateman, Harry. "Partial differential equations of mathematical physics." Partial Differential Equations of Mathematical Physics, by H. Bateman, Cambridge, UK: Cambridge University Press, 1932 (1932).
- ↑ Walker, George W. "Some problems illustrating the forms of nebulae." Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 91.631 (1915): 410-420.https://www.jstor.org/stable/pdf/93512.pdf?refreqid=excelsior%3Af4a4cc9656b8bbd9266f9d32587d02b1
- ↑ Joseph, D. D., and T. S. Lundgren. "Quasilinear Dirichlet problems driven by positive sources." Archive for Rational Mechanics and Analysis 49.4 (1973): 241-269.
Original source: https://en.wikipedia.org/wiki/Liouville–Bratu–Gelfand equation.
Read more |