Liouville surface
In the mathematical field of differential geometry a Liouville surface[1] (named after Joseph Liouville) is a type of surface which in local coordinates may be written as a graph in R3
such that the first fundamental form is of the form
Sometimes a metric of this form is called a Liouville metric. Every surface of revolution is a Liouville surface.
Darboux[2] gives a general treatment of such surfaces considering a two-dimensional space with metric
where and are functions of and and are functions of . A geodesic line on such a surface is given by
and the distance along the geodesic is given by
Here is a constant related to the direction of the geodesic by
where is the angle of the geodesic measured from a line of constant . In this way, the solution of geodesics on Liouville surfaces is reduced to quadrature. This was first demonstrated by Jacobi for the case of geodesics on a triaxial ellipsoid,[3] a special case of a Liouville surface.
Notes
- ↑ Liouville 1846
- ↑ Template:Harvardnb, §§583-584
- ↑ Template:Harvardnb
References
- Darboux, Jean-Gaston (1894) (in fr). Leçons sur la théorie générale des surfaces. 3. Gauthier-Villars. https://gallica.bnf.fr/ark:/12148/bpt6k778307/f9.
- Gelfand, I.M.; Fomin, S.V. (2000). Calculus of variations. Dover. ISBN 0-486-41448-5. (Translated from the Russian by R. Silverman.)
- Guggenheimer, Heinrich (1977). "Chapter 11: Inner geometry of surfaces". Differential Geometry. Dover. ISBN 0-486-63433-7.
- "Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution" (in de). Journal für die Reine und Angewandte Mathematik 1839 (19): 309–313. 1839. doi:10.1515/crll.1839.19.309. https://books.google.com/books?id=RbwGAAAAYAAJ&pg=PA309.
- Liouville, Joseph (1846). "Sur quelques cas particuliers où les équations du mouvement d'un point matériel peuvent s'intégrer" (in fr). Journal de Mathématiques Pures et Appliquées 11: 345-378. http://sites.mathdoc.fr/JMPA/PDF/JMPA_1846_1_11_A45_0.pdf.
