List of Laplace transforms

From HandWiki
Short description: none

The following is a list of Laplace transforms for many common functions of a single variable.[1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (frequency).

Properties

The Laplace transform of a function f(t) can be obtained using the formal definition of the Laplace transform. However, some properties of the Laplace transform can be used to obtain the Laplace transform of some functions more easily.

Linearity

For functions f and g and for scalar a, the Laplace transform satisfies

{af(t)+g(t)}=a{f(t)}+{g(t)}

and is, therefore, regarded as a linear operator.

Time shifting

The Laplace transform of f(ta)u(ta) is easF(s).

Frequency shifting

F(sa) is the Laplace transform of eatf(t).

Explanatory notes

The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t).

The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0). A causal system is a system where the impulse response h(t) is zero for all time t prior to t = 0. In general, the region of convergence for causal systems is not the same as that of anticausal systems.

The following functions and variables are used in the table below:

  • δ represents the Dirac delta function.
  • u(t) represents the Heaviside step function. Literature may refer to this by other notation, including 1(t) or H(t).
  • Γ(z) represents the Gamma function.
  • γ is the Euler–Mascheroni constant.
  • t is a real number. It typically represents time, although it can represent any independent dimension.
  • s is the complex frequency domain parameter, and Re(s) is its real part.
  • n is an integer.
  • α, τ, and ω are real numbers.
  • q is a complex number.

Table

Function Time domain
f(t)=1{F(s)}
Laplace s-domain
F(s)={f(t)}
Region of convergence Reference
unit impulse δ(t) 1 all s inspection
delayed impulse δ(tτ) eτs Re(s) > 0 time shift of
unit impulse[2]
unit step u(t) 1s Re(s) > 0 integrate unit impulse
delayed unit step u(tτ) 1seτs Re(s) > 0 time shift of
unit step[3]
ramp tu(t) 1s2 Re(s) > 0 integrate unit
impulse twice
nth power
(for integer n)
tnu(t) n!sn+1 Re(s) > 0
(n > −1)
Integrate unit
step n times
qth power
(for complex q)
tqu(t) Γ(q+1)sq+1 Re(s) > 0
Re(q) > −1
[4][5]
nth root tnu(t) 1s1n+1Γ(1n+1) Re(s) > 0 Set q = 1/n above.
nth power with frequency shift tneαtu(t) n!(s+α)n+1 Re(s) > −α Integrate unit step,
apply frequency shift
delayed nth power
with frequency shift
(tτ)neα(tτ)u(tτ) n!eτs(s+α)n+1 Re(s) > −α Integrate unit step,
apply frequency shift,
apply time shift
exponential decay eαtu(t) 1s+α Re(s) > −α Frequency shift of
unit step
two-sided exponential decay
(only for bilateral transform)
eα|t| 2αα2s2 α < Re(s) < α Frequency shift of
unit step
exponential approach (1eαt)u(t) αs(s+α) Re(s) > 0 Unit step minus
exponential decay
sine sin(ωt)u(t) ωs2+ω2 Re(s) > 0 [6]
cosine cos(ωt)u(t) ss2+ω2 Re(s) > 0 [6]
hyperbolic sine sinh(αt)u(t) αs2α2 Re(s) > |α| [7]
hyperbolic cosine cosh(αt)u(t) ss2α2 Re(s) > |α| [7]
exponentially decaying
sine wave
eαtsin(ωt)u(t) ω(s+α)2+ω2 Re(s) > −α [6]
exponentially decaying
cosine wave
eαtcos(ωt)u(t) s+α(s+α)2+ω2 Re(s) > −α [6]
natural logarithm ln(t)u(t) ln(s)γs Re(s) > 0 [7]
Bessel function
of the first kind,
of order n
Jn(ωt)u(t) (s2+ω2s)nωns2+ω2 Re(s) > 0
(n > −1)
[7]
Error function erf(t)u(t) es2/4s(1erf(s2)) Re(s) > 0 [7]

See also

  • List of Fourier transforms

References

  1. Distefano, J. J.; Stubberud, A. R.; Williams, I. J. (1995), Feedback systems and control, Schaum's outlines (2nd ed.), McGraw-Hill, p. 78, ISBN 978-0-07-017052-0 
  2. Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010), Mathematical methods for physics and engineering (3rd ed.), Cambridge University Press, p. 455, ISBN 978-0-521-86153-3 
  3. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), "Chapter 33: Laplace transforms", Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (3rd ed.), McGraw-Hill, p. 192, ISBN 978-0-07-154855-7 
  4. Lipschutz, S.; Spiegel, M. R.; Liu, J. (2009), "Chapter 33: Laplace transforms", Mathematical Handbook of Formulas and Tables, Schaum's Outline Series (3rd ed.), McGraw-Hill, p. 183, ISBN 978-0-07-154855-7 
  5. "Laplace Transform". http://mathworld.wolfram.com/LaplaceTransform.html. Retrieved 30 April 2016. 
  6. 6.0 6.1 6.2 6.3 Bracewell, Ronald N. (1978), The Fourier Transform and its Applications (2nd ed.), McGraw-Hill Kogakusha, p. 227, ISBN 978-0-07-007013-4 
  7. 7.0 7.1 7.2 7.3 7.4 Williams, J. (1973), Laplace Transforms, Problem Solvers, George Allen & Unwin, p. 88, ISBN 978-0-04-512021-5