List of representations of e
Part of a series of articles on the |
mathematical constant e |
---|
Properties |
Applications |
Defining e |
People |
Related topics |
The mathematical constant e can be represented in a variety of ways as a real number. Since e is an irrational number (see proof that e is irrational), it cannot be represented as the quotient of two integers, but it can be represented as a continued fraction. Using calculus, e may also be represented as an infinite series, infinite product, or other types of limit of a sequence.
As a continued fraction
Euler proved that the number e is represented as the infinite simple continued fraction[1] (sequence A003417 in the OEIS):
- [math]\displaystyle{ e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, \ldots, 1, 2n, 1, \ldots]. }[/math]
Its convergence can be tripled[clarification needed][citation needed] by allowing just one fractional number:
- [math]\displaystyle{ e = [1; 1/2, 12, 5, 28, 9, 44, 13, 60, 17, \ldots, 4(4n-1), 4n+1, \ldots]. }[/math]
Here are some infinite generalized continued fraction expansions of e. The second is generated from the first by a simple equivalence transformation.
- [math]\displaystyle{ e= 2+\cfrac{1}{1+\cfrac{1}{2+\cfrac{2}{3+\cfrac{3}{4+\cfrac{4}{5+\ddots}}}}} = 2+\cfrac{2}{2+\cfrac{3}{3+\cfrac{4}{4+\cfrac{5}{5+\cfrac{6}{6+\ddots\,}}}}} }[/math]
- [math]\displaystyle{ e = 2+\cfrac{1}{1+\cfrac{2}{5+\cfrac{1}{10+\cfrac{1}{14+\cfrac{1}{18+\ddots\,}}}}} = 1+\cfrac{2}{1+\cfrac{1}{6+\cfrac{1}{10+\cfrac{1}{14+\cfrac{1}{18+\ddots\,}}}}} }[/math]
This last, equivalent to [1; 0.5, 12, 5, 28, 9, ...], is a special case of a general formula for the exponential function:
- [math]\displaystyle{ e^{x/y} = 1+\cfrac{2x} {2y-x+\cfrac{x^2} {6y+\cfrac{x^2} {10y+\cfrac{x^2} {14y+\cfrac{x^2} {18y+\ddots}}}}} }[/math]
As an infinite series
The number e can be expressed as the sum of the following infinite series:
- [math]\displaystyle{ e^x = \sum_{k=0}^\infty \frac{x^k}{k!} }[/math] for any real number x.
In the special case where x = 1 or −1, we have:
- [math]\displaystyle{ e = \sum_{k=0}^\infty \frac{1}{k!} }[/math],[2] and
- [math]\displaystyle{ e^{-1} = \sum_{k=0}^\infty \frac{(-1)^k}{k!}. }[/math]
Other series include the following:
- [math]\displaystyle{ e = \left [ \sum_{k=0}^\infty \frac{1-2k}{(2k)!} \right ]^{-1} }[/math] [3]
- [math]\displaystyle{ e = \frac{1}{2} \sum_{k=0}^\infty \frac{k+1}{k!} }[/math]
- [math]\displaystyle{ e = 2 \sum_{k=0}^\infty \frac{k+1}{(2k+1)!} }[/math]
- [math]\displaystyle{ e = \sum_{k=0}^\infty \frac{3-4k^2}{(2k+1)!} }[/math]
- [math]\displaystyle{ e = \sum_{k=0}^\infty \frac{(3k)^2+1}{(3k)!} = \sum_{k=0}^\infty \frac{(3k+1)^2+1}{(3k+1)!} = \sum_{k=0}^\infty \frac{(3k+2)^2+1}{(3k+2)!} }[/math]
- [math]\displaystyle{ e = \left [ \sum_{k=0}^\infty \frac{4k+3}{2^{2k+1}\,(2k+1)!} \right ]^2 }[/math]
- [math]\displaystyle{ e = \sum_{k=0}^\infty \frac{k^n}{B_n(k!)} }[/math] where [math]\displaystyle{ B_n }[/math] is the nth Bell number.
- [math]\displaystyle{ e = \sum_{k=0}^\infty \frac{2k+3}{(k+2)!} }[/math][4]
Consideration of how to put upper bounds on e leads to this descending series:
- [math]\displaystyle{ e = 3 - \sum_{k=2}^\infty \frac{1}{k! (k-1) k} = 3 - \frac{1}{4} - \frac{1}{36} - \frac{1}{288} - \frac{1}{2400} - \frac{1}{21600} - \frac{1}{211680} - \frac{1}{2257920} - \cdots }[/math]
which gives at least one correct (or rounded up) digit per term. That is, if 1 ≤ n, then
- [math]\displaystyle{ e \lt 3 - \sum_{k=2}^n \frac{1}{k! (k-1) k} \lt e + 0.6 \cdot 10^{1-n} \,. }[/math]
More generally, if x is not in {2, 3, 4, 5, ...}, then
- [math]\displaystyle{ e^x = \frac{2+x}{2-x} + \sum_{k=2}^\infty \frac{- x^{k+1}}{k! (k-x) (k+1-x)} \,. }[/math]
As a recursive function
The series representation of [math]\displaystyle{ e }[/math], given as [math]\displaystyle{ e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} \cdots }[/math]can also be expressed using a form of recursion. When [math]\displaystyle{ \frac{1}{n} }[/math] is iteratively factored from the original series the result is the nested series[5] [math]\displaystyle{ e = 1 + \frac{1}{1}(1 + \frac{1}{2}(1 + \frac{1}{3}(1 + \cdots ))) }[/math]which equates to [math]\displaystyle{ e = 1 + \cfrac{1 + \cfrac{1 + \cfrac{1 + \cdots }{3}}{2}}{1} }[/math] This fraction is of the form [math]\displaystyle{ f(n) = 1 + \frac{f(n + 1)}{n} }[/math], where [math]\displaystyle{ f(1) }[/math] computes the sum of the terms from [math]\displaystyle{ 1 }[/math] to [math]\displaystyle{ \infty }[/math].
As an infinite product
The number e is also given by several infinite product forms including Pippenger's product
- [math]\displaystyle{ e= 2 \left ( \frac{2}{1} \right )^{1/2} \left ( \frac{2}{3}\; \frac{4}{3} \right )^{1/4} \left ( \frac{4}{5}\; \frac{6}{5}\; \frac{6}{7}\; \frac{8}{7} \right )^{1/8} \cdots }[/math]
- [math]\displaystyle{ e = \left ( \frac{2}{1} \right )^{1/1} \left (\frac{2^2}{1 \cdot 3} \right )^{1/2} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/3} \left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/4} \cdots , }[/math]
where the nth factor is the nth root of the product
- [math]\displaystyle{ \prod_{k=0}^n (k+1)^{(-1)^{k+1}{n \choose k}}, }[/math]
as well as the infinite product
- [math]\displaystyle{ e = \frac{2\cdot 2^{(\ln(2)-1)^2} \cdots}{2^{\ln(2)-1}\cdot 2^{(\ln(2)-1)^3}\cdots }. }[/math]
More generally, if 1 < B < e2 (which includes B = 2, 3, 4, 5, 6, or 7), then
- [math]\displaystyle{ e = \frac{B\cdot B^{(\ln(B)-1)^2} \cdots}{B^{\ln(B)-1}\cdot B^{(\ln(B)-1)^3}\cdots }. }[/math]
Also
- [math]\displaystyle{ e = \lim\limits_{n\rightarrow\infty}\prod_{k=0}^n{n \choose k}^{2/{((n +\alpha)(n+\beta))}}\ \forall\alpha,\beta\in\Bbb R }[/math]
As the limit of a sequence
The number e is equal to the limit of several infinite sequences:
- [math]\displaystyle{ e= \lim_{n \to \infty} n\cdot\left ( \frac{\sqrt{2 \pi n}}{n!} \right )^{1/n} }[/math] and
- [math]\displaystyle{ e=\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} }[/math] (both by Stirling's formula).
The symmetric limit,[8]
- [math]\displaystyle{ e=\lim_{n \to \infty} \left [ \frac{(n+1)^{n+1}}{n^n}- \frac{n^n}{(n-1)^{n-1}} \right ] }[/math]
may be obtained by manipulation of the basic limit definition of e.
The next two definitions are direct corollaries of the prime number theorem[9]
- [math]\displaystyle{ e= \lim_{n \to \infty}(p_n \#)^{1/p_n} }[/math]
where [math]\displaystyle{ p_n }[/math] is the nth prime and [math]\displaystyle{ p_n \# }[/math] is the primorial of the nth prime.
- [math]\displaystyle{ e= \lim_{n \to \infty}n^{\pi(n)/n} }[/math]
where [math]\displaystyle{ \pi(n) }[/math] is the prime-counting function.
Also:
- [math]\displaystyle{ e^x= \lim_{n \to \infty}\left (1+ \frac{x}{n} \right )^n. }[/math]
In the special case that [math]\displaystyle{ x = 1 }[/math], the result is the famous statement:
- [math]\displaystyle{ e= \lim_{n \to \infty}\left (1+ \frac{1}{n} \right )^n. }[/math]
The ratio of the factorial [math]\displaystyle{ n! }[/math], that counts all permutations of an ordered set S with cardinality [math]\displaystyle{ n }[/math], and the derangement function [math]\displaystyle{ !n }[/math], which counts the amount of permutations where no element appears in its original position, tends to [math]\displaystyle{ e }[/math] as [math]\displaystyle{ n }[/math] grows.
- [math]\displaystyle{ e= \lim_{n \to \infty} \frac{n!}{!n}. }[/math]
In trigonometry
Trigonometrically, e can be written in terms of the sum of two hyperbolic functions,
- [math]\displaystyle{ e^x = \sinh(x) + \cosh(x) , }[/math]
at x = 1.
See also
Notes
- ↑ Sandifer, Ed (Feb 2006). "How Euler Did It: Who proved e is Irrational?". MAA Online. http://eulerarchive.maa.org/hedi/HEDI-2006-02.pdf. Retrieved 2017-04-23.
- ↑ Brown, Stan (2006-08-27). "It's the Law Too — the Laws of Logarithms". Oak Road Systems. Archived from the original on 2008-08-13. https://web.archive.org/web/20080813175402/http://oakroadsystems.com/math/loglaws.htm. Retrieved 2008-08-14.
- ↑ Formulas 2–7: H. J. Brothers, Improving the convergence of Newton's series approximation for e, The College Mathematics Journal, Vol. 35, No. 1, (2004), pp. 34–39.
- ↑ Formula 8: A. G. Llorente, A Novel Simple Representation Series for Euler’s Number e, preprint, 2023.
- ↑ "e", Wolfram MathWorld: ex. 17, 18, and 19, https://mathworld.wolfram.com/e.html.
- ↑ J. Sondow, A faster product for pi and a new integral for ln pi/2, Amer. Math. Monthly 112 (2005) 729–734.
- ↑ J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan Journal 16 (2008), 247–270.
- ↑ H. J. Brothers and J. A. Knox, New closed-form approximations to the Logarithmic Constant e, The Mathematical Intelligencer, Vol. 20, No. 4, (1998), pp. 25–29.
- ↑ S. M. Ruiz 1997
Original source: https://en.wikipedia.org/wiki/List of representations of e.
Read more |