List of space groups

From HandWiki
Short description: None

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

  • P primitive
  • I body centered (from the German Innenzentriert)
  • F face centered (from the German Flächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

  • [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math], or [math]\displaystyle{ c }[/math]: glide translation along half the lattice vector of this face
  • [math]\displaystyle{ n }[/math]: glide translation along half the diagonal of this face
  • [math]\displaystyle{ d }[/math]: glide planes with translation along a quarter of a face diagonal
  • [math]\displaystyle{ e }[/math]: two glides with the same glide plane and translation along two (different) half-lattice vectors.[note 1]

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is [math]\displaystyle{ \color{Black}\tfrac{360^\circ}{n} }[/math]. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of ½ of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of ⅓ of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction [math]\displaystyle{ \frac{n}{m} }[/math] or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form [math]\displaystyle{ \Gamma_x^y }[/math] which specifies the Bravais lattice. Here [math]\displaystyle{ x \in \{t, m, o, q, rh, h, c\} }[/math] is the lattice system, and [math]\displaystyle{ y \in \{\empty, b, v, f\} }[/math] is the centering type.[2]

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups, for example, the space groups P4/mmm ([math]\displaystyle{ P\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math], 36s) and I4/mmm ([math]\displaystyle{ I\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math], 37s).

Hemisymmorphic

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Hemisymmorphic space groups contain the axial combination 422, which are P4/mcc ([math]\displaystyle{ P\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{c} }[/math], 35h), P4/nbm ([math]\displaystyle{ P\tfrac{4}{n}\tfrac{2}{b}\tfrac{2}{m} }[/math], 36h), P4/nnc ([math]\displaystyle{ P\tfrac{4}{n}\tfrac{2}{n}\tfrac{2}{c} }[/math], 37h), and I4/mcm ([math]\displaystyle{ I\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{m} }[/math], 38h).

Asymmorphic

The remaining 103 space groups are asymmorphic, for example, those derived from the point group 4/mmm ([math]\displaystyle{ \tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math]).

List of triclinic

Triclinic Bravais lattice
Triclinic.svg
Triclinic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
1 1 [math]\displaystyle{ 1 }[/math] P1 P 1 [math]\displaystyle{ \Gamma_tC_1^1 }[/math] 1s [math]\displaystyle{ (a/b/c)\cdot 1 }[/math] [math]\displaystyle{ (\circ) }[/math]
2 1 [math]\displaystyle{ \times }[/math] P1 P 1 [math]\displaystyle{ \Gamma_tC_i^1 }[/math] 2s [math]\displaystyle{ (a/b/c)\cdot \tilde 2 }[/math] [math]\displaystyle{ (2222) }[/math]

List of monoclinic

Monoclinic Bravais lattice
Simple (P) Base (C)
Monoclinic.svg Base-centered monoclinic.svg
Monoclinic crystal system
Number Point group Orbifold Short name Full name(s) Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
3 2 [math]\displaystyle{ 22 }[/math] P2 P 1 2 1 P 1 1 2 [math]\displaystyle{ \Gamma_mC_2^1 }[/math] 3s [math]\displaystyle{ (b:(c/a)):2 }[/math] [math]\displaystyle{ (2_02_02_02_0) }[/math] [math]\displaystyle{ ({*}_0{*}_0) }[/math]
4 P21 P 1 21 1 P 1 1 21 [math]\displaystyle{ \Gamma_mC_2^2 }[/math] 1a [math]\displaystyle{ (b:(c/a)):2_1 }[/math] [math]\displaystyle{ (2_12_12_12_1) }[/math] [math]\displaystyle{ (\bar{\times}\bar{\times}) }[/math]
5 C2 C 1 2 1 B 1 1 2 [math]\displaystyle{ \Gamma_m^bC_2^3 }[/math] 4s [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) :2 }[/math] [math]\displaystyle{ (2_02_02_12_1) }[/math] [math]\displaystyle{ ({*}_1{*}_1) }[/math], [math]\displaystyle{ ({*}\bar{\times}) }[/math]
6 m [math]\displaystyle{ * }[/math] Pm P 1 m 1 P 1 1 m [math]\displaystyle{ \Gamma_mC_s^1 }[/math] 5s [math]\displaystyle{ (b:(c/a))\cdot m }[/math] [math]\displaystyle{ [\circ_0] }[/math] [math]\displaystyle{ ({*}{\cdot}{*}{\cdot}) }[/math]
7 Pc P 1 c 1 P 1 1 b [math]\displaystyle{ \Gamma_mC_s^2 }[/math] 1h [math]\displaystyle{ (b:(c/a))\cdot \tilde c }[/math] [math]\displaystyle{ (\bar\circ_0) }[/math] [math]\displaystyle{ ({*}{:}{*}{:}) }[/math], [math]\displaystyle{ ({\times}{\times}_0) }[/math]
8 Cm C 1 m 1 B 1 1 m [math]\displaystyle{ \Gamma_m^bC_s^3 }[/math] 6s [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m }[/math] [math]\displaystyle{ [\circ_1] }[/math] [math]\displaystyle{ ({*}{\cdot}{*}{:}) }[/math], [math]\displaystyle{ ({*}{\cdot}{\times}) }[/math]
9 Cc C 1 c 1 B 1 1 b [math]\displaystyle{ \Gamma_m^bC_s^4 }[/math] 2h [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c }[/math] [math]\displaystyle{ (\bar\circ_1) }[/math] [math]\displaystyle{ ({*}{:}{\times}) }[/math], [math]\displaystyle{ ({\times}{\times}_1) }[/math]
10 2/m [math]\displaystyle{ 2* }[/math] P2/m P 1 2/m 1 P 1 1 2/m [math]\displaystyle{ \Gamma_mC_{2h}^1 }[/math] 7s [math]\displaystyle{ (b:(c/a))\cdot m:2 }[/math] [math]\displaystyle{ [2_02_02_02_0] }[/math] [math]\displaystyle{ [*2{\cdot}22{\cdot}2) }[/math]
11 P21/m P 1 21/m 1 P 1 1 21/m [math]\displaystyle{ \Gamma_mC_{2h}^2 }[/math] 2a [math]\displaystyle{ (b:(c/a))\cdot m:2_1 }[/math] [math]\displaystyle{ [2_12_12_12_1] }[/math] [math]\displaystyle{ (22{*}{\cdot}) }[/math]
12 C2/m C 1 2/m 1 B 1 1 2/m [math]\displaystyle{ \Gamma_m^bC_{2h}^3 }[/math] 8s [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m:2 }[/math] [math]\displaystyle{ [2_02_02_12_1] }[/math] [math]\displaystyle{ (*2{\cdot}22{:}2) }[/math], [math]\displaystyle{ (2\bar{*}2{\cdot}2) }[/math]
13 P2/c P 1 2/c 1 P 1 1 2/b [math]\displaystyle{ \Gamma_mC_{2h}^4 }[/math] 3h [math]\displaystyle{ (b:(c/a))\cdot \tilde c:2 }[/math] [math]\displaystyle{ (2_02_022) }[/math] [math]\displaystyle{ (*2{:}22{:}2) }[/math], [math]\displaystyle{ (22{*}_0) }[/math]
14 P21/c P 1 21/c 1 P 1 1 21/b [math]\displaystyle{ \Gamma_mC_{2h}^5 }[/math] 3a [math]\displaystyle{ (b:(c/a))\cdot \tilde c:2_1 }[/math] [math]\displaystyle{ (2_12_122) }[/math] [math]\displaystyle{ (22{*}{:}) }[/math], [math]\displaystyle{ (22{\times}) }[/math]
15 C2/c C 1 2/c 1 B 1 1 2/b [math]\displaystyle{ \Gamma_m^bC_{2h}^6 }[/math] 4h [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c:2 }[/math] [math]\displaystyle{ (2_02_122) }[/math] [math]\displaystyle{ (2\bar{*}2{:}2) }[/math], [math]\displaystyle{ (22{*}_1) }[/math]

List of orthorhombic

Orthorhombic Bravais lattice
Simple (P) Body (I) Face (F) Base (A or C)
Orthorhombic.svg Orthorhombic-body-centered.svg Orthorhombic-face-centered.svg Orthorhombic-base-centered.svg
Orthorhombic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
16 222 [math]\displaystyle{ 222 }[/math] P222 P 2 2 2 [math]\displaystyle{ \Gamma_oD_2^1 }[/math] 9s [math]\displaystyle{ (c:a:b):2:2 }[/math] [math]\displaystyle{ (*2_02_02_02_0) }[/math]
17 P2221 P 2 2 21 [math]\displaystyle{ \Gamma_oD_2^2 }[/math] 4a [math]\displaystyle{ (c:a:b):2_1:2 }[/math] [math]\displaystyle{ (*2_12_12_12_1) }[/math] [math]\displaystyle{ (2_02_0{*}) }[/math]
18 P21212 P 21 21 2 [math]\displaystyle{ \Gamma_oD_2^3 }[/math] 7a [math]\displaystyle{ (c:a:b):2 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (2_02_0\bar{\times}) }[/math] [math]\displaystyle{ (2_12_1{*}) }[/math]
19 P212121 P 21 21 21 [math]\displaystyle{ \Gamma_oD_2^4 }[/math] 8a [math]\displaystyle{ (c:a:b):2_1 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (2_12_1\bar{\times}) }[/math]
20 C2221 C 2 2 21 [math]\displaystyle{ \Gamma_o^bD_2^5 }[/math] 5a [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :2_1:2 }[/math] [math]\displaystyle{ (2_1{*}2_12_1) }[/math] [math]\displaystyle{ (2_02_1{*}) }[/math]
21 C222 C 2 2 2 [math]\displaystyle{ \Gamma_o^bD_2^6 }[/math] 10s [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :2:2 }[/math] [math]\displaystyle{ (2_0{*}2_02_0) }[/math] [math]\displaystyle{ (*2_02_02_12_1) }[/math]
22 F222 F 2 2 2 [math]\displaystyle{ \Gamma_o^fD_2^7 }[/math] 12s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :2:2 }[/math] [math]\displaystyle{ (*2_02_12_02_1) }[/math]
23 I222 I 2 2 2 [math]\displaystyle{ \Gamma_o^vD_2^8 }[/math] 11s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) :2:2 }[/math] [math]\displaystyle{ (2_1{*}2_02_0) }[/math]
24 I212121 I 21 21 21 [math]\displaystyle{ \Gamma_o^vD_2^9 }[/math] 6a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :2:2_1 }[/math] [math]\displaystyle{ (2_0{*}2_12_1) }[/math]
25 mm2 [math]\displaystyle{ *22 }[/math] Pmm2 P m m 2 [math]\displaystyle{ \Gamma_oC_{2v}^1 }[/math] 13s [math]\displaystyle{ (c:a:b):m \cdot 2 }[/math] [math]\displaystyle{ (*{\cdot}2{\cdot}2{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [{*}_0{\cdot}{*}_0{\cdot}] }[/math]
26 Pmc21 P m c 21 [math]\displaystyle{ \Gamma_oC_{2v}^2 }[/math] 9a [math]\displaystyle{ (c:a:b): \tilde c \cdot 2_1 }[/math] [math]\displaystyle{ (*{\cdot}2{:}2{\cdot}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}{\cdot}) }[/math], [math]\displaystyle{ [{\times_0}{\times_0}] }[/math]
27 Pcc2 P c c 2 [math]\displaystyle{ \Gamma_oC_{2v}^3 }[/math] 5h [math]\displaystyle{ (c:a:b): \tilde c \cdot 2 }[/math] [math]\displaystyle{ (*{:}2{:}2{:}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}_0\bar{*}_0) }[/math]
28 Pma2 P m a 2 [math]\displaystyle{ \Gamma_oC_{2v}^4 }[/math] 6h [math]\displaystyle{ (c:a:b): \tilde a \cdot 2 }[/math] [math]\displaystyle{ (2_02_0{*}{\cdot}) }[/math] [math]\displaystyle{ [{*}_0{:}{*}_0{:}] }[/math], [math]\displaystyle{ (*{\cdot}{*}_0) }[/math]
29 Pca21 P c a 21 [math]\displaystyle{ \Gamma_oC_{2v}^5 }[/math] 11a [math]\displaystyle{ (c:a:b): \tilde a \cdot 2_1 }[/math] [math]\displaystyle{ (2_12_1{*}{:}) }[/math] [math]\displaystyle{ (\bar{*}{:}\bar{*}{:}) }[/math]
30 Pnc2 P n c 2 [math]\displaystyle{ \Gamma_oC_{2v}^6 }[/math] 7h [math]\displaystyle{ (c:a:b): \tilde c \odot 2 }[/math] [math]\displaystyle{ (2_02_0{*}{:}) }[/math] [math]\displaystyle{ (\bar{*}_1\bar{*}_1) }[/math], [math]\displaystyle{ ({*}_0{\times}_0) }[/math]
31 Pmn21 P m n 21 [math]\displaystyle{ \Gamma_oC_{2v}^7 }[/math] 10a [math]\displaystyle{ (c:a:b): \widetilde{ac} \cdot 2_1 }[/math] [math]\displaystyle{ (2_12_1{*}{\cdot}) }[/math] [math]\displaystyle{ (*{\cdot}\bar{\times}) }[/math], [math]\displaystyle{ [{\times}_0{\times}_1] }[/math]
32 Pba2 P b a 2 [math]\displaystyle{ \Gamma_oC_{2v}^8 }[/math] 9h [math]\displaystyle{ (c:a:b): \tilde a \odot 2 }[/math] [math]\displaystyle{ (2_02_0{\times}_0) }[/math] [math]\displaystyle{ (*{:}{*}_0) }[/math]
33 Pna21 P n a 21 [math]\displaystyle{ \Gamma_oC_{2v}^9 }[/math] 12a [math]\displaystyle{ (c:a:b): \tilde a \odot 2_1 }[/math] [math]\displaystyle{ (2_12_1{\times}) }[/math] [math]\displaystyle{ (*{:}{\times}) }[/math], [math]\displaystyle{ ({\times}{\times}_1) }[/math]
34 Pnn2 P n n 2 [math]\displaystyle{ \Gamma_oC_{2v}^{10} }[/math] 8h [math]\displaystyle{ (c:a:b): \widetilde{ac} \odot 2 }[/math] [math]\displaystyle{ (2_02_0{\times}_1) }[/math] [math]\displaystyle{ (*_0{\times}_1) }[/math]
35 Cmm2 C m m 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{11} }[/math] 14s [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2 }[/math] [math]\displaystyle{ (2_0{*}{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [*_0{\cdot}{*}_0{:}] }[/math]
36 Cmc21 C m c 21 [math]\displaystyle{ \Gamma_o^bC_{2v}^{12} }[/math] 13a [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :\tilde c \cdot 2_1 }[/math] [math]\displaystyle{ (2_1{*}{\cdot}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}{:}) }[/math], [math]\displaystyle{ [{\times}_1{\times}_1] }[/math]
37 Ccc2 C c c 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{13} }[/math] 10h [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) : \tilde c \cdot 2 }[/math] [math]\displaystyle{ (2_0{*}{:}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}_0\bar{*}_1) }[/math]
38 Amm2 A m m 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{14} }[/math] 15s [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ):m \cdot 2 }[/math] [math]\displaystyle{ (*{\cdot}2{\cdot}2{\cdot}2{:}2) }[/math] [math]\displaystyle{ [{*}_1{\cdot}{*}_1{\cdot}] }[/math], [math]\displaystyle{ [*{\cdot}{\times}_0] }[/math]
39 Aem2 A b m 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{15} }[/math] 11h [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) :m \cdot 2_1 }[/math] [math]\displaystyle{ (*{\cdot}2{:}2{:}2{:}2) }[/math] [math]\displaystyle{ [{*}_1{:}{*}_1{:}] }[/math], [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}_0) }[/math]
40 Ama2 A m a 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{16} }[/math] 12h [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2 }[/math] [math]\displaystyle{ (2_02_1{*}{\cdot}) }[/math] [math]\displaystyle{ (*{\cdot}{*}_1) }[/math], [math]\displaystyle{ [*{:}{\times}_1] }[/math]
41 Aea2 A b a 2 [math]\displaystyle{ \Gamma_o^bC_{2v}^{17} }[/math] 13h [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2_1 }[/math] [math]\displaystyle{ (2_02_1{*}{:}) }[/math] [math]\displaystyle{ (*{:}{*}_1) }[/math], [math]\displaystyle{ (\bar{*}{:}\bar{*}_1) }[/math]
42 Fmm2 F m m 2 [math]\displaystyle{ \Gamma_o^fC_{2v}^{18} }[/math] 17s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2 }[/math] [math]\displaystyle{ (*{\cdot}2{\cdot}2{:}2{:}2) }[/math] [math]\displaystyle{ [{*}_1{\cdot}{*}_1{:}] }[/math]
43 Fdd2 F dd2 [math]\displaystyle{ \Gamma_o^fC_{2v}^{19} }[/math] 16h [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b \right ) : \tfrac{1}{2} \widetilde{ac} \odot 2 }[/math] [math]\displaystyle{ (2_02_1{\times}) }[/math] [math]\displaystyle{ ({*}_1{\times}) }[/math]
44 Imm2 I m m 2 [math]\displaystyle{ \Gamma_o^vC_{2v}^{20} }[/math] 16s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :m \cdot 2 }[/math] [math]\displaystyle{ (2_1{*}{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [*{\cdot}{\times}_1] }[/math]
45 Iba2 I b a 2 [math]\displaystyle{ \Gamma_o^vC_{2v}^{21} }[/math] 15h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde c \cdot 2 }[/math] [math]\displaystyle{ (2_1{*}{:}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}{:}\bar{*}_0) }[/math]
46 Ima2 I m a 2 [math]\displaystyle{ \Gamma_o^vC_{2v}^{22} }[/math] 14h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde a \cdot 2 }[/math] [math]\displaystyle{ (2_0{*}{\cdot}2{:}2) }[/math] [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}_1) }[/math], [math]\displaystyle{ [*{:}{\times}_0] }[/math]
47 [math]\displaystyle{ \tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math] [math]\displaystyle{ *222 }[/math] Pmmm P 2/m 2/m 2/m [math]\displaystyle{ \Gamma_oD_{2h}^1 }[/math] 18s [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \cdot m }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2] }[/math]
48 Pnnn P 2/n 2/n 2/n [math]\displaystyle{ \Gamma_oD_{2h}^2 }[/math] 19h [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \widetilde{ac} }[/math] [math]\displaystyle{ (2\bar{*}_12_02_0 }[/math]
49 Pccm P 2/c 2/c 2/m [math]\displaystyle{ \Gamma_oD_{2h}^3 }[/math] 17h [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \cdot \tilde c }[/math] [math]\displaystyle{ [*{:}2{:}2{:}2{:}2] }[/math] [math]\displaystyle{ (*2_02_02{\cdot}2) }[/math]
50 Pban P 2/b 2/a 2/n [math]\displaystyle{ \Gamma_oD_{2h}^4 }[/math] 18h [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \tilde a }[/math] [math]\displaystyle{ (2\bar{*}_02_02_0) }[/math] [math]\displaystyle{ (*2_02_02{:}2) }[/math]
51 Pmma P 21/m 2/m 2/a [math]\displaystyle{ \Gamma_oD_{2h}^5 }[/math] 14a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a :2 \cdot m }[/math] [math]\displaystyle{ [2_02_0{*}{\cdot}] }[/math] [math]\displaystyle{ [*{\cdot}2{:}2{\cdot}2{:}2] }[/math], [math]\displaystyle{ [*2{\cdot}2{\cdot}2{\cdot}2] }[/math]
52 Pnna P 2/n 21/n 2/a [math]\displaystyle{ \Gamma_oD_{2h}^6 }[/math] 17a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2 \odot \widetilde{ac} }[/math] [math]\displaystyle{ (2_02\bar{*}_1) }[/math] [math]\displaystyle{ (2_0{*}2{:}2) }[/math], [math]\displaystyle{ (2\bar{*}2_12_1) }[/math]
53 Pmna P 2/m 2/n 21/a [math]\displaystyle{ \Gamma_oD_{2h}^7 }[/math] 15a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \cdot \widetilde{ac} }[/math] [math]\displaystyle{ [2_02_0{*}{:}] }[/math] [math]\displaystyle{ (*2_12_12{\cdot}2) }[/math], [math]\displaystyle{ (2_0{*}2{\cdot}2) }[/math]
54 Pcca P 21/c 2/c 2/a [math]\displaystyle{ \Gamma_oD_{2h}^8 }[/math] 16a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2 \cdot \tilde c }[/math] [math]\displaystyle{ (2_02\bar{*}_0) }[/math] [math]\displaystyle{ (*2{:}2{:}2{:}2) }[/math], [math]\displaystyle{ (*2_12_12{:}2) }[/math]
55 Pbam P 21/b 21/a 2/m [math]\displaystyle{ \Gamma_oD_{2h}^9 }[/math] 22a [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \odot \tilde a }[/math] [math]\displaystyle{ [2_02_0{\times}_0] }[/math] [math]\displaystyle{ (*2{\cdot}2{:}2{\cdot}2) }[/math]
56 Pccn P 21/c 21/c 2/n [math]\displaystyle{ \Gamma_oD_{2h}^{10} }[/math] 27a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot \tilde c }[/math] [math]\displaystyle{ (2\bar{*}{:}2{:}2) }[/math] [math]\displaystyle{ (2_12\bar{*}_0) }[/math]
57 Pbcm P 2/b 21/c 21/m [math]\displaystyle{ \Gamma_oD_{2h}^{11} }[/math] 23a [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2_1 \odot \tilde c }[/math] [math]\displaystyle{ (2_02\bar{*}{\cdot}) }[/math] [math]\displaystyle{ (*2{:}2{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_12_1{*}{:}] }[/math]
58 Pnnm P 21/n 21/n 2/m [math]\displaystyle{ \Gamma_oD_{2h}^{12} }[/math] 25a [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \odot \widetilde{ac} }[/math] [math]\displaystyle{ [2_02_0{\times}_1] }[/math] [math]\displaystyle{ (2_1{*}2{\cdot}2) }[/math]
59 Pmmn P 21/m 21/m 2/n [math]\displaystyle{ \Gamma_oD_{2h}^{13} }[/math] 24a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot m }[/math] [math]\displaystyle{ (2\bar{*}{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [2_12_1{*}{\cdot}] }[/math]
60 Pbcn P 21/b 2/c 21/n [math]\displaystyle{ \Gamma_oD_{2h}^{14} }[/math] 26a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2_1 \odot \tilde c }[/math] [math]\displaystyle{ (2_02\bar{*}{:}) }[/math] [math]\displaystyle{ (2_1{*}2{:}2) }[/math], [math]\displaystyle{ (2_12\bar{*}_1) }[/math]
61 Pbca P 21/b 21/c 21/a [math]\displaystyle{ \Gamma_oD_{2h}^{15} }[/math] 29a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot \tilde c }[/math] [math]\displaystyle{ (2_12\bar{*}{:}) }[/math]
62 Pnma P 21/n 21/m 21/a [math]\displaystyle{ \Gamma_oD_{2h}^{16} }[/math] 28a [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot m }[/math] [math]\displaystyle{ (2_12\bar{*}{\cdot}) }[/math] [math]\displaystyle{ (2\bar{*}{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_12_1{\times}] }[/math]
63 Cmcm C 2/m 2/c 21/m [math]\displaystyle{ \Gamma_o^bD_{2h}^{17} }[/math] 18a [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2_1 \cdot \tilde c }[/math] [math]\displaystyle{ [2_02_1{*}{\cdot}] }[/math] [math]\displaystyle{ (*2{\cdot}2{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_1{*}{\cdot}2{:}2] }[/math]
64 Cmce C 2/m 2/c 21/a [math]\displaystyle{ \Gamma_o^bD_{2h}^{18} }[/math] 19a [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2_1 \cdot \tilde c }[/math] [math]\displaystyle{ [2_02_1{*}{:}] }[/math] [math]\displaystyle{ (*2{\cdot}2{:}2{:}2) }[/math], [math]\displaystyle{ (*2_12{\cdot}2{:}2) }[/math]
65 Cmmm C 2/m 2/m 2/m [math]\displaystyle{ \Gamma_o^bD_{2h}^{19} }[/math] 19s [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m }[/math] [math]\displaystyle{ [2_0{*}{\cdot}2{\cdot}2] }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{:}2] }[/math]
66 Cccm C 2/c 2/c 2/m [math]\displaystyle{ \Gamma_o^bD_{2h}^{20} }[/math] 20h [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot \tilde c }[/math] [math]\displaystyle{ [2_0{*}{:}2{:}2] }[/math] [math]\displaystyle{ (*2_02_12{\cdot}2) }[/math]
67 Cmme C 2/m 2/m 2/e [math]\displaystyle{ \Gamma_o^bD_{2h}^{21} }[/math] 21h [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot m }[/math] [math]\displaystyle{ (*2_02{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [*{\cdot}2{:}2{:}2{:}2] }[/math]
68 Ccce C 2/c 2/c 2/e [math]\displaystyle{ \Gamma_o^bD_{2h}^{22} }[/math] 22h [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c }[/math] [math]\displaystyle{ (*2_02{:}2{:}2) }[/math] [math]\displaystyle{ (*2_02_12{:}2) }[/math]
69 Fmmm F 2/m 2/m 2/m [math]\displaystyle{ \Gamma_o^fD_{2h}^{23} }[/math] 21s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2] }[/math]
70 Fddd F 2/d 2/d 2/d [math]\displaystyle{ \Gamma_o^fD_{2h}^{24} }[/math] 24h [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot \tfrac{1}{2}\widetilde{ab}:2 \odot \tfrac{1}{2}\widetilde{ac} }[/math] [math]\displaystyle{ (2\bar{*}2_02_1) }[/math]
71 Immm I 2/m 2/m 2/m [math]\displaystyle{ \Gamma_o^vD_{2h}^{25} }[/math] 20s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot m }[/math] [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2] }[/math]
72 Ibam I 2/b 2/a 2/m [math]\displaystyle{ \Gamma_o^vD_{2h}^{26} }[/math] 23h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot \tilde c }[/math] [math]\displaystyle{ [2_1{*}{:}2{:}2] }[/math] [math]\displaystyle{ (*2_02{\cdot}2{:}2) }[/math]
73 Ibca I 2/b 2/c 2/a [math]\displaystyle{ \Gamma_o^vD_{2h}^{27} }[/math] 21a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c }[/math] [math]\displaystyle{ (*2_12{:}2{:}2) }[/math]
74 Imma I 2/m 2/m 2/a [math]\displaystyle{ \Gamma_o^vD_{2h}^{28} }[/math] 20a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot m }[/math] [math]\displaystyle{ (*2_12{\cdot}2{\cdot}2) }[/math] [math]\displaystyle{ [2_0{*}{\cdot}2{:}2] }[/math]

List of tetragonal

Tetragonal Bravais lattice
Simple (P) Body (I)
Tetragonal.svg Tetragonal-body-centered.svg
Tetragonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
75 4 [math]\displaystyle{ 44 }[/math] P4 P 4 [math]\displaystyle{ \Gamma_qC_4^1 }[/math] 22s [math]\displaystyle{ (c:a:a):4 }[/math] [math]\displaystyle{ (4_04_02_0) }[/math]
76 P41 P 41 [math]\displaystyle{ \Gamma_qC_4^2 }[/math] 30a [math]\displaystyle{ (c:a:a) :4_1 }[/math] [math]\displaystyle{ (4_14_12_1) }[/math]
77 P42 P 42 [math]\displaystyle{ \Gamma_qC_4^3 }[/math] 33a [math]\displaystyle{ (c:a:a) :4_2 }[/math] [math]\displaystyle{ (4_24_22_0) }[/math]
78 P43 P 43 [math]\displaystyle{ \Gamma_qC_4^4 }[/math] 31a [math]\displaystyle{ (c:a:a) :4_3 }[/math] [math]\displaystyle{ (4_14_12_1) }[/math]
79 I4 I 4 [math]\displaystyle{ \Gamma_q^vC_4^5 }[/math] 23s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4 }[/math] [math]\displaystyle{ (4_24_02_1) }[/math]
80 I41 I 41 [math]\displaystyle{ \Gamma_q^vC_4^6 }[/math] 32a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1 }[/math] [math]\displaystyle{ (4_34_12_0) }[/math]
81 4 [math]\displaystyle{ 2\times }[/math] P4 P 4 [math]\displaystyle{ \Gamma_qS_4^1 }[/math] 26s [math]\displaystyle{ (c:a:a):\tilde 4 }[/math] [math]\displaystyle{ (442_0) }[/math]
82 I4 I 4 [math]\displaystyle{ \Gamma_q^vS_4^2 }[/math] 27s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 }[/math] [math]\displaystyle{ (442_1) }[/math]
83 4/m [math]\displaystyle{ 4* }[/math] P4/m P 4/m [math]\displaystyle{ \Gamma_qC_{4h}^1 }[/math] 28s [math]\displaystyle{ (c:a:a)\cdot m:4 }[/math] [math]\displaystyle{ [4_04_02_0] }[/math]
84 P42/m P 42/m [math]\displaystyle{ \Gamma_qC_{4h}^2 }[/math] 41a [math]\displaystyle{ (c:a:a)\cdot m:4_2 }[/math] [math]\displaystyle{ [4_24_22_0] }[/math]
85 P4/n P 4/n [math]\displaystyle{ \Gamma_qC_{4h}^3 }[/math] 29h [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4 }[/math] [math]\displaystyle{ (44_02) }[/math]
86 P42/n P 42/n [math]\displaystyle{ \Gamma_qC_{4h}^4 }[/math] 42a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2 }[/math] [math]\displaystyle{ (44_22) }[/math]
87 I4/m I 4/m [math]\displaystyle{ \Gamma_q^vC_{4h}^5 }[/math] 29s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4 }[/math] [math]\displaystyle{ [4_24_02_1] }[/math]
88 I41/a I 41/a [math]\displaystyle{ \Gamma_q^vC_{4h}^6 }[/math] 40a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1 }[/math] [math]\displaystyle{ (44_12) }[/math]
89 422 [math]\displaystyle{ 224 }[/math] P422 P 4 2 2 [math]\displaystyle{ \Gamma_qD_4^1 }[/math] 30s [math]\displaystyle{ (c:a:a):4:2 }[/math] [math]\displaystyle{ (*4_04_02_0) }[/math]
90 P4212 P4212 [math]\displaystyle{ \Gamma_qD_4^2 }[/math] 43a [math]\displaystyle{ (c:a:a):4 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (4_0{*}2_0) }[/math]
91 P4122 P 41 2 2 [math]\displaystyle{ \Gamma_qD_4^3 }[/math] 44a [math]\displaystyle{ (c:a:a):4_1:2 }[/math] [math]\displaystyle{ (*4_14_12_1) }[/math]
92 P41212 P 41 21 2 [math]\displaystyle{ \Gamma_qD_4^4 }[/math] 48a [math]\displaystyle{ (c:a:a):4_1 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (4_1{*}2_1) }[/math]
93 P4222 P 42 2 2 [math]\displaystyle{ \Gamma_qD_4^5 }[/math] 47a [math]\displaystyle{ (c:a:a):4_2:2 }[/math] [math]\displaystyle{ (*4_24_22_0) }[/math]
94 P42212 P 42 21 2 [math]\displaystyle{ \Gamma_qD_4^6 }[/math] 50a [math]\displaystyle{ (c:a:a):4_2 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (4_2{*}2_0) }[/math]
95 P4322 P 43 2 2 [math]\displaystyle{ \Gamma_qD_4^7 }[/math] 45a [math]\displaystyle{ (c:a:a):4_3:2 }[/math] [math]\displaystyle{ (*4_14_12_1) }[/math]
96 P43212 P 43 21 2 [math]\displaystyle{ \Gamma_qD_4^8 }[/math] 49a [math]\displaystyle{ (c:a:a):4_3 }[/math] Circled colon.png [math]\displaystyle{ 2_1 }[/math] [math]\displaystyle{ (4_1{*}2_1) }[/math]
97 I422 I 4 2 2 [math]\displaystyle{ \Gamma_q^vD_4^9 }[/math] 31s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2 }[/math] [math]\displaystyle{ (*4_24_02_1) }[/math]
98 I4122 I 41 2 2 [math]\displaystyle{ \Gamma_q^vD_4^{10} }[/math] 46a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2_1 }[/math] [math]\displaystyle{ (*4_34_12_0) }[/math]
99 4mm [math]\displaystyle{ *44 }[/math] P4mm P 4 m m [math]\displaystyle{ \Gamma_qC_{4v}^1 }[/math] 24s [math]\displaystyle{ (c:a:a):4\cdot m }[/math] [math]\displaystyle{ (*{\cdot}4{\cdot}4{\cdot}2) }[/math]
100 P4bm P 4 b m [math]\displaystyle{ \Gamma_qC_{4v}^2 }[/math] 26h [math]\displaystyle{ (c:a:a):4\odot \tilde a }[/math] [math]\displaystyle{ (4_0{*}{\cdot}2) }[/math]
101 P42cm P 42 c m [math]\displaystyle{ \Gamma_qC_{4v}^3 }[/math] 37a [math]\displaystyle{ (c:a:a):4_2\cdot \tilde c }[/math] [math]\displaystyle{ (*{:}4{\cdot}4{:}2) }[/math]
102 P42nm P 42 n m [math]\displaystyle{ \Gamma_qC_{4v}^4 }[/math] 38a [math]\displaystyle{ (c:a:a):4_2\odot \widetilde{ac} }[/math] [math]\displaystyle{ (4_2{*}{\cdot}2) }[/math]
103 P4cc P 4 c c [math]\displaystyle{ \Gamma_qC_{4v}^5 }[/math] 25h [math]\displaystyle{ (c:a:a):4\cdot \tilde c }[/math] [math]\displaystyle{ (*{:}4{:}4{:}2) }[/math]
104 P4nc P 4 n c [math]\displaystyle{ \Gamma_qC_{4v}^6 }[/math] 27h [math]\displaystyle{ (c:a:a):4\odot \widetilde{ac} }[/math] [math]\displaystyle{ (4_0{*}{:}2) }[/math]
105 P42mc P 42 m c [math]\displaystyle{ \Gamma_qC_{4v}^7 }[/math] 36a [math]\displaystyle{ (c:a:a):4_2\cdot m }[/math] [math]\displaystyle{ (*{\cdot}4{:}4{\cdot}2) }[/math]
106 P42bc P 42 b c [math]\displaystyle{ \Gamma_qC_{4v}^8 }[/math] 39a [math]\displaystyle{ (c:a:a):4\odot \tilde a }[/math] [math]\displaystyle{ (4_2{*}{:}2) }[/math]
107 I4mm I 4 m m [math]\displaystyle{ \Gamma_q^vC_{4v}^9 }[/math] 25s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot m }[/math] [math]\displaystyle{ (*{\cdot}4{\cdot}4{:}2) }[/math]
108 I4cm I 4 c m [math]\displaystyle{ \Gamma_q^vC_{4v}^{10} }[/math] 28h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot \tilde c }[/math] [math]\displaystyle{ (*{\cdot}4{:}4{:}2) }[/math]
109 I41md I 41 m d [math]\displaystyle{ \Gamma_q^vC_{4v}^{11} }[/math] 34a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot m }[/math] [math]\displaystyle{ (4_1{*}{\cdot}2) }[/math]
110 I41cd I 41 c d [math]\displaystyle{ \Gamma_q^vC_{4v}^{12} }[/math] 35a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot \tilde c }[/math] [math]\displaystyle{ (4_1{*}{:}2) }[/math]
111 42m [math]\displaystyle{ 2{*}2 }[/math] P42m P 4 2 m [math]\displaystyle{ \Gamma_qD_{2d}^1 }[/math] 32s [math]\displaystyle{ (c:a:a):\tilde 4 :2 }[/math] [math]\displaystyle{ (*4{\cdot}42_0) }[/math]
112 P42c P 4 2 c [math]\displaystyle{ \Gamma_qD_{2d}^2 }[/math] 30h [math]\displaystyle{ (c:a:a):\tilde 4 }[/math] Circled colon.png [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ (*4{:}42_0) }[/math]
113 P421m P 4 21 m [math]\displaystyle{ \Gamma_qD_{2d}^3 }[/math] 52a [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{ab} }[/math] [math]\displaystyle{ (4\bar{*}{\cdot}2) }[/math]
114 P421c P 4 21 c [math]\displaystyle{ \Gamma_qD_{2d}^4 }[/math] 53a [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{abc} }[/math] [math]\displaystyle{ (4\bar{*}{:}2) }[/math]
115 P4m2 P 4 m 2 [math]\displaystyle{ \Gamma_qD_{2d}^5 }[/math] 33s [math]\displaystyle{ (c:a:a):\tilde 4 \cdot m }[/math] [math]\displaystyle{ (*{\cdot}44{\cdot}2) }[/math]
116 P4c2 P 4 c 2 [math]\displaystyle{ \Gamma_qD_{2d}^6 }[/math] 31h [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \tilde c }[/math] [math]\displaystyle{ (*{:}44{:}2) }[/math]
117 P4b2 P 4 b 2 [math]\displaystyle{ \Gamma_qD_{2d}^7 }[/math] 32h [math]\displaystyle{ (c:a:a):\tilde 4 \odot \tilde a }[/math] [math]\displaystyle{ (4\bar{*}_02_0) }[/math]
118 P4n2 P 4 n 2 [math]\displaystyle{ \Gamma_qD_{2d}^8 }[/math] 33h [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{ac} }[/math] [math]\displaystyle{ (4\bar{*}_12_0) }[/math]
119 I4m2 I 4 m 2 [math]\displaystyle{ \Gamma_q^vD_{2d}^9 }[/math] 35s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot m }[/math] [math]\displaystyle{ (*4{\cdot}42_1) }[/math]
120 I4c2 I 4 c 2 [math]\displaystyle{ \Gamma_q^vD_{2d}^{10} }[/math] 34h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot \tilde c }[/math] [math]\displaystyle{ (*4{:}42_1) }[/math]
121 I42m I 4 2 m [math]\displaystyle{ \Gamma_q^vD_{2d}^{11} }[/math] 34s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 :2 }[/math] [math]\displaystyle{ (*{\cdot}44{:}2) }[/math]
122 I42d I 4 2 d [math]\displaystyle{ \Gamma_q^vD_{2d}^{12} }[/math] 51a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \odot \tfrac{1}{2}\widetilde{abc} }[/math] [math]\displaystyle{ (4\bar{*}2_1) }[/math]
123 4/m 2/m 2/m [math]\displaystyle{ *224 }[/math] P4/mmm P 4/m 2/m 2/m [math]\displaystyle{ \Gamma_qD_{4h}^1 }[/math] 36s [math]\displaystyle{ (c:a:a)\cdot m:4\cdot m }[/math] [math]\displaystyle{ [*{\cdot}4{\cdot}4{\cdot}2] }[/math]
124 P4/mcc P 4/m 2/c 2/c [math]\displaystyle{ \Gamma_qD_{4h}^2 }[/math] 35h [math]\displaystyle{ (c:a:a)\cdot m:4\cdot \tilde c }[/math] [math]\displaystyle{ [*{:}4{:}4{:}2] }[/math]
125 P4/nbm P 4/n 2/b 2/m [math]\displaystyle{ \Gamma_qD_{4h}^3 }[/math] 36h [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\odot \tilde a }[/math] [math]\displaystyle{ (*4_04{\cdot}2) }[/math]
126 P4/nnc P 4/n 2/n 2/c [math]\displaystyle{ \Gamma_qD_{4h}^4 }[/math] 37h [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\odot \widetilde{ac} }[/math] [math]\displaystyle{ (*4_04{:}2) }[/math]
127 P4/mbm P 4/m 21/b 2/m [math]\displaystyle{ \Gamma_qD_{4h}^5 }[/math] 54a [math]\displaystyle{ (c:a:a)\cdot m:4\odot \tilde a }[/math] [math]\displaystyle{ [4_0{*}{\cdot}2] }[/math]
128 P4/mnc P 4/m 21/n 2/c [math]\displaystyle{ \Gamma_qD_{4h}^6 }[/math] 56a [math]\displaystyle{ (c:a:a)\cdot m:4\odot \widetilde{ac} }[/math] [math]\displaystyle{ [4_0{*}{:}2] }[/math]
129 P4/nmm P 4/n 21/m 2/m [math]\displaystyle{ \Gamma_qD_{4h}^7 }[/math] 55a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\cdot m }[/math] [math]\displaystyle{ (*4{\cdot}4{\cdot}2) }[/math]
130 P4/ncc P 4/n 21/c 2/c [math]\displaystyle{ \Gamma_qD_{4h}^8 }[/math] 57a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\cdot \tilde c }[/math] [math]\displaystyle{ (*4{:}4{:}2) }[/math]
131 P42/mmc P 42/m 2/m 2/c [math]\displaystyle{ \Gamma_qD_{4h}^9 }[/math] 60a [math]\displaystyle{ (c:a:a)\cdot m:4_2\cdot m }[/math] [math]\displaystyle{ [*{\cdot}4{:}4{\cdot}2] }[/math]
132 P42/mcm P 42/m 2/c 2/m [math]\displaystyle{ \Gamma_qD_{4h}^{10} }[/math] 61a [math]\displaystyle{ (c:a:a)\cdot m:4_2\cdot \tilde c }[/math] [math]\displaystyle{ [*{:}4{\cdot}4{:}2] }[/math]
133 P42/nbc P 42/n 2/b 2/c [math]\displaystyle{ \Gamma_qD_{4h}^{11} }[/math] 63a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\odot \tilde a }[/math] [math]\displaystyle{ (*4_24{:}2) }[/math]
134 P42/nnm P 42/n 2/n 2/m [math]\displaystyle{ \Gamma_qD_{4h}^{12} }[/math] 62a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\odot \widetilde{ac} }[/math] [math]\displaystyle{ (*4_24{\cdot}2) }[/math]
135 P42/mbc P 42/m 21/b 2/c [math]\displaystyle{ \Gamma_qD_{4h}^{13} }[/math] 66a [math]\displaystyle{ (c:a:a)\cdot m:4_2\odot \tilde a }[/math] [math]\displaystyle{ [4_2{*}{:}2] }[/math]
136 P42/mnm P 42/m 21/n 2/m [math]\displaystyle{ \Gamma_qD_{4h}^{14} }[/math] 65a [math]\displaystyle{ (c:a:a)\cdot m:4_2\odot \widetilde{ac} }[/math] [math]\displaystyle{ [4_2{*}{\cdot}2] }[/math]
137 P42/nmc P 42/n 21/m 2/c [math]\displaystyle{ \Gamma_qD_{4h}^{15} }[/math] 67a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\cdot m }[/math] [math]\displaystyle{ (*4{\cdot}4{:}2) }[/math]
138 P42/ncm P 42/n 21/c 2/m [math]\displaystyle{ \Gamma_qD_{4h}^{16} }[/math] 65a [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\cdot \tilde c }[/math] [math]\displaystyle{ (*4{:}4{\cdot}2) }[/math]
139 I4/mmm I 4/m 2/m 2/m [math]\displaystyle{ \Gamma_q^vD_{4h}^{17} }[/math] 37s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot m }[/math] [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2] }[/math]
140 I4/mcm I 4/m 2/c 2/m [math]\displaystyle{ \Gamma_q^vD_{4h}^{18} }[/math] 38h [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot \tilde c }[/math] [math]\displaystyle{ [*{\cdot}4{:}4{:}2] }[/math]
141 I41/amd I 41/a 2/m 2/d [math]\displaystyle{ \Gamma_q^vD_{4h}^{19} }[/math] 59a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot m }[/math] [math]\displaystyle{ (*4_14{\cdot}2) }[/math]
142 I41/acd I 41/a 2/c 2/d [math]\displaystyle{ \Gamma_q^vD_{4h}^{20} }[/math] 58a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot \tilde c }[/math] [math]\displaystyle{ (*4_14{:}2) }[/math]

List of trigonal

Trigonal Bravais lattice
Rhombohedral (R) Hexagonal (P)
Hexagonal latticeR.svg Hexagonal latticeFRONT.svg
Trigonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
143 3 [math]\displaystyle{ 33 }[/math] P3 P 3 [math]\displaystyle{ \Gamma_hC_3^1 }[/math] 38s [math]\displaystyle{ (c:(a/a)):3 }[/math] [math]\displaystyle{ (3_03_03_0) }[/math]
144 P31 P 31 [math]\displaystyle{ \Gamma_hC_3^2 }[/math] 68a [math]\displaystyle{ (c:(a/a)):3_1 }[/math] [math]\displaystyle{ (3_13_13_1) }[/math]
145 P32 P 32 [math]\displaystyle{ \Gamma_hC_3^3 }[/math] 69a [math]\displaystyle{ (c:(a/a)):3_2 }[/math] [math]\displaystyle{ (3_13_13_1) }[/math]
146 R3 R 3 [math]\displaystyle{ \Gamma_{rh}C_3^4 }[/math] 39s [math]\displaystyle{ (a/a/a)/3 }[/math] [math]\displaystyle{ (3_03_13_2) }[/math]
147 3 [math]\displaystyle{ 3\times }[/math] P3 P 3 [math]\displaystyle{ \Gamma_hC_{3i}^1 }[/math] 51s [math]\displaystyle{ (c:(a/a)):\tilde 6 }[/math] [math]\displaystyle{ (63_02) }[/math]
148 R3 R 3 [math]\displaystyle{ \Gamma_{rh}C_{3i}^2 }[/math] 52s [math]\displaystyle{ (a/a/a)/\tilde 6 }[/math] [math]\displaystyle{ (63_12) }[/math]
149 32 [math]\displaystyle{ 223 }[/math] P312 P 3 1 2 [math]\displaystyle{ \Gamma_hD_3^1 }[/math] 45s [math]\displaystyle{ (c:(a/a)):2:3 }[/math] [math]\displaystyle{ (*3_03_03_0) }[/math]
150 P321 P 3 2 1 [math]\displaystyle{ \Gamma_hD_3^2 }[/math] 44s [math]\displaystyle{ (c:(a/a))\cdot 2:3 }[/math] [math]\displaystyle{ (3_0{*}3_0) }[/math]
151 P3112 P 31 1 2 [math]\displaystyle{ \Gamma_hD_3^3 }[/math] 72a [math]\displaystyle{ (c:(a/a)):2:3_1 }[/math] [math]\displaystyle{ (*3_13_13_1) }[/math]
152 P3121 P 31 2 1 [math]\displaystyle{ \Gamma_hD_3^4 }[/math] 70a [math]\displaystyle{ (c:(a/a))\cdot 2:3_1 }[/math] [math]\displaystyle{ (3_1{*}3_1) }[/math]
153 P3212 P 32 1 2 [math]\displaystyle{ \Gamma_hD_3^5 }[/math] 73a [math]\displaystyle{ (c:(a/a)):2:3_2 }[/math] [math]\displaystyle{ (*3_13_13_1) }[/math]
154 P3221 P 32 2 1 [math]\displaystyle{ \Gamma_hD_3^6 }[/math] 71a [math]\displaystyle{ (c:(a/a))\cdot 2:3_2 }[/math] [math]\displaystyle{ (3_1{*}3_1) }[/math]
155 R32 R 3 2 [math]\displaystyle{ \Gamma_{rh}D_3^7 }[/math] 46s [math]\displaystyle{ (a/a/a)/3:2 }[/math] [math]\displaystyle{ (*3_03_13_2) }[/math]
156 3m [math]\displaystyle{ *33 }[/math] P3m1 P 3 m 1 [math]\displaystyle{ \Gamma_hC_{3v}^1 }[/math] 40s [math]\displaystyle{ (c:(a/a)):m\cdot 3 }[/math] [math]\displaystyle{ (*{\cdot}3{\cdot}3{\cdot}3) }[/math]
157 P31m P 3 1 m [math]\displaystyle{ \Gamma_hC_{3v}^2 }[/math] 41s [math]\displaystyle{ (c:(a/a))\cdot m\cdot 3 }[/math] [math]\displaystyle{ (3_0{*}{\cdot}3) }[/math]
158 P3c1 P 3 c 1 [math]\displaystyle{ \Gamma_hC_{3v}^3 }[/math] 39h [math]\displaystyle{ (c:(a/a)):\tilde c:3 }[/math] [math]\displaystyle{ (*{:}3{:}3{:}3) }[/math]
159 P31c P 3 1 c [math]\displaystyle{ \Gamma_hC_{3v}^4 }[/math] 40h [math]\displaystyle{ (c:(a/a))\cdot\tilde c :3 }[/math] [math]\displaystyle{ (3_0{*}{:}3) }[/math]
160 R3m R 3 m [math]\displaystyle{ \Gamma_{rh}C_{3v}^5 }[/math] 42s [math]\displaystyle{ (a/a/a)/3\cdot m }[/math] [math]\displaystyle{ (3_1{*}{\cdot}3) }[/math]
161 R3c R 3 c [math]\displaystyle{ \Gamma_{rh}C_{3v}^6 }[/math] 41h [math]\displaystyle{ (a/a/a)/3\cdot\tilde c }[/math] [math]\displaystyle{ (3_1{*}{:}3) }[/math]
162 3 2/m [math]\displaystyle{ 2{*}3 }[/math] P31m P 3 1 2/m [math]\displaystyle{ \Gamma_hD_{3d}^1 }[/math] 56s [math]\displaystyle{ (c:(a/a))\cdot m\cdot\tilde 6 }[/math] [math]\displaystyle{ (*{\cdot}63_02) }[/math]
163 P31c P 3 1 2/c [math]\displaystyle{ \Gamma_hD_{3d}^2 }[/math] 46h [math]\displaystyle{ (c:(a/a))\cdot\tilde c \cdot\tilde 6 }[/math] [math]\displaystyle{ (*{:}63_02) }[/math]
164 P3m1 P 3 2/m 1 [math]\displaystyle{ \Gamma_hD_{3d}^3 }[/math] 55s [math]\displaystyle{ (c:(a/a)):m\cdot\tilde 6 }[/math] [math]\displaystyle{ (*6{\cdot}3{\cdot}2) }[/math]
165 P3c1 P 3 2/c 1 [math]\displaystyle{ \Gamma_hD_{3d}^4 }[/math] 45h [math]\displaystyle{ (c:(a/a)):\tilde c \cdot\tilde 6 }[/math] [math]\displaystyle{ (*6{:}3{:}2) }[/math]
166 R3m R 3 2/m [math]\displaystyle{ \Gamma_{rh}D_{3d}^5 }[/math] 57s [math]\displaystyle{ (a/a/a)/\tilde 6 \cdot m }[/math] [math]\displaystyle{ (*{\cdot}63_12) }[/math]
167 R3c R 3 2/c [math]\displaystyle{ \Gamma_{rh}D_{3d}^6 }[/math] 47h [math]\displaystyle{ (a/a/a)/\tilde 6 \cdot\tilde c }[/math] [math]\displaystyle{ (*{:}63_12) }[/math]

List of hexagonal

Hexagonal Bravais lattice
Hexagonal latticeFRONT.svg
Hexagonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
168 6 [math]\displaystyle{ 66 }[/math] P6 P 6 [math]\displaystyle{ \Gamma_hC_6^1 }[/math] 49s [math]\displaystyle{ (c:(a/a)):6 }[/math] [math]\displaystyle{ (6_03_02_0) }[/math]
169 P61 P 61 [math]\displaystyle{ \Gamma_hC_6^2 }[/math] 74a [math]\displaystyle{ (c:(a/a)):6_1 }[/math] [math]\displaystyle{ (6_13_12_1) }[/math]
170 P65 P 65 [math]\displaystyle{ \Gamma_hC_6^3 }[/math] 75a [math]\displaystyle{ (c:(a/a)):6_5 }[/math] [math]\displaystyle{ (6_13_12_1) }[/math]
171 P62 P 62 [math]\displaystyle{ \Gamma_hC_6^4 }[/math] 76a [math]\displaystyle{ (c:(a/a)):6_2 }[/math] [math]\displaystyle{ (6_23_22_0) }[/math]
172 P64 P 64 [math]\displaystyle{ \Gamma_hC_6^5 }[/math] 77a [math]\displaystyle{ (c:(a/a)):6_4 }[/math] [math]\displaystyle{ (6_23_22_0) }[/math]
173 P63 P 63 [math]\displaystyle{ \Gamma_hC_6^6 }[/math] 78a [math]\displaystyle{ (c:(a/a)):6_3 }[/math] [math]\displaystyle{ (6_33_02_1) }[/math]
174 6 [math]\displaystyle{ 3* }[/math] P6 P 6 [math]\displaystyle{ \Gamma_hC_{3h}^1 }[/math] 43s [math]\displaystyle{ (c:(a/a)):3:m }[/math] [math]\displaystyle{ [3_03_03_0] }[/math]
175 6/m [math]\displaystyle{ 6* }[/math] P6/m P 6/m [math]\displaystyle{ \Gamma_hC_{6h}^1 }[/math] 53s [math]\displaystyle{ (c:(a/a))\cdot m :6 }[/math] [math]\displaystyle{ [6_03_02_0] }[/math]
176 P63/m P 63/m [math]\displaystyle{ \Gamma_hC_{6h}^2 }[/math] 81a [math]\displaystyle{ (c:(a/a))\cdot m :6_3 }[/math] [math]\displaystyle{ [6_33_02_1] }[/math]
177 622 [math]\displaystyle{ 226 }[/math] P622 P 6 2 2 [math]\displaystyle{ \Gamma_hD_6^1 }[/math] 54s [math]\displaystyle{ (c:(a/a))\cdot 2 :6 }[/math] [math]\displaystyle{ (*6_03_02_0) }[/math]
178 P6122 P 61 2 2 [math]\displaystyle{ \Gamma_hD_6^2 }[/math] 82a [math]\displaystyle{ (c:(a/a))\cdot 2 :6_1 }[/math] [math]\displaystyle{ (*6_13_12_1) }[/math]
179 P6522 P 65 2 2 [math]\displaystyle{ \Gamma_hD_6^3 }[/math] 83a [math]\displaystyle{ (c:(a/a))\cdot 2 :6_5 }[/math] [math]\displaystyle{ (*6_13_12_1) }[/math]
180 P6222 P 62 2 2 [math]\displaystyle{ \Gamma_hD_6^4 }[/math] 84a [math]\displaystyle{ (c:(a/a))\cdot 2 :6_2 }[/math] [math]\displaystyle{ (*6_23_22_0) }[/math]
181 P6422 P 64 2 2 [math]\displaystyle{ \Gamma_hD_6^5 }[/math] 85a [math]\displaystyle{ (c:(a/a))\cdot 2 :6_4 }[/math] [math]\displaystyle{ (*6_23_22_0) }[/math]
182 P6322 P 63 2 2 [math]\displaystyle{ \Gamma_hD_6^6 }[/math] 86a [math]\displaystyle{ (c:(a/a))\cdot 2 :6_3 }[/math] [math]\displaystyle{ (*6_33_02_1) }[/math]
183 6mm [math]\displaystyle{ *66 }[/math] P6mm P 6 m m [math]\displaystyle{ \Gamma_hC_{6v}^1 }[/math] 50s [math]\displaystyle{ (c:(a/a)):m\cdot 6 }[/math] [math]\displaystyle{ (*{\cdot}6{\cdot}3{\cdot}2) }[/math]
184 P6cc P 6 c c [math]\displaystyle{ \Gamma_hC_{6v}^2 }[/math] 44h [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 6 }[/math] [math]\displaystyle{ (*{:}6{:}3{:}2) }[/math]
185 P63cm P 63 c m [math]\displaystyle{ \Gamma_hC_{6v}^3 }[/math] 80a [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 6_3 }[/math] [math]\displaystyle{ (*{\cdot}6{:}3{:}2) }[/math]
186 P63mc P 63 m c [math]\displaystyle{ \Gamma_hC_{6v}^4 }[/math] 79a [math]\displaystyle{ (c:(a/a)):m\cdot 6_3 }[/math] [math]\displaystyle{ (*{:}6{\cdot}3{\cdot}2) }[/math]
187 6m2 [math]\displaystyle{ *223 }[/math] P6m2 P 6 m 2 [math]\displaystyle{ \Gamma_hD_{3h}^1 }[/math] 48s [math]\displaystyle{ (c:(a/a)):m\cdot 3:m }[/math] [math]\displaystyle{ [*{\cdot}3{\cdot}3{\cdot}3] }[/math]
188 P6c2 P 6 c 2 [math]\displaystyle{ \Gamma_hD_{3h}^2 }[/math] 43h [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 3:m }[/math] [math]\displaystyle{ [*{:}3{:}3{:}3] }[/math]
189 P62m P 6 2 m [math]\displaystyle{ \Gamma_hD_{3h}^3 }[/math] 47s [math]\displaystyle{ (c:(a/a))\cdot m:3\cdot m }[/math] [math]\displaystyle{ [3_0{*}{\cdot}3] }[/math]
190 P62c P 6 2 c [math]\displaystyle{ \Gamma_hD_{3h}^4 }[/math] 42h [math]\displaystyle{ (c:(a/a))\cdot m:3\cdot \tilde c }[/math] [math]\displaystyle{ [3_0{*}{:}3] }[/math]
191 6/m 2/m 2/m [math]\displaystyle{ *226 }[/math] P6/mmm P 6/m 2/m 2/m [math]\displaystyle{ \Gamma_hD_{6h}^1 }[/math] 58s [math]\displaystyle{ (c:(a/a))\cdot m:6\cdot m }[/math] [math]\displaystyle{ [*{\cdot}6{\cdot}3{\cdot}2] }[/math]
192 P6/mcc P 6/m 2/c 2/c [math]\displaystyle{ \Gamma_hD_{6h}^2 }[/math] 48h [math]\displaystyle{ (c:(a/a))\cdot m:6\cdot\tilde c }[/math] [math]\displaystyle{ [*{:}6{:}3{:}2] }[/math]
193 P63/mcm P 63/m 2/c 2/m [math]\displaystyle{ \Gamma_hD_{6h}^3 }[/math] 87a [math]\displaystyle{ (c:(a/a))\cdot m:6_3\cdot\tilde c }[/math] [math]\displaystyle{ [*{\cdot}6{:}3{:}2] }[/math]
194 P63/mmc P 63/m 2/m 2/c [math]\displaystyle{ \Gamma_hD_{6h}^4 }[/math] 88a [math]\displaystyle{ (c:(a/a))\cdot m:6_3\cdot m }[/math] [math]\displaystyle{ [*{:}6{\cdot}3{\cdot}2] }[/math]

List of cubic

Cubic Bravais lattice
Simple (P) Body centered (I) Face centered (F)
Cubic.svg Cubic-body-centered.svg Cubic-face-centered.svg
Cubic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Conway Fibrifold (preserving [math]\displaystyle{ z }[/math]) Fibrifold (preserving [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math], [math]\displaystyle{ z }[/math])
195 23 [math]\displaystyle{ 332 }[/math] P23 P 2 3 [math]\displaystyle{ \Gamma_cT^1 }[/math] 59s [math]\displaystyle{ \left ( a:a:a\right ) :2/3 }[/math] [math]\displaystyle{ 2^\circ }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}3 }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}3 }[/math]
196 F23 F 2 3 [math]\displaystyle{ \Gamma_c^fT^2 }[/math] 61s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :2/3 }[/math] [math]\displaystyle{ 1^\circ }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}3 }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}3 }[/math]
197 I23 I 2 3 [math]\displaystyle{ \Gamma_c^vT^3 }[/math] 60s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2/3 }[/math] [math]\displaystyle{ 4^{\circ\circ} }[/math] [math]\displaystyle{ (2_1{*}2_02_0){:}3 }[/math] [math]\displaystyle{ (2_1{*}2_02_0){:}3 }[/math]
198 P213 P 21 3 [math]\displaystyle{ \Gamma_cT^4 }[/math] 89a [math]\displaystyle{ \left ( a:a:a\right ) :2_1/3 }[/math] [math]\displaystyle{ 1^\circ/4 }[/math] [math]\displaystyle{ (2_12_1\bar{\times}){:}3 }[/math] [math]\displaystyle{ (2_12_1\bar{\times}){:}3 }[/math]
199 I213 I 21 3 [math]\displaystyle{ \Gamma_c^vT^5 }[/math] 90a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2_1/3 }[/math] [math]\displaystyle{ 2^\circ/4 }[/math] [math]\displaystyle{ (2_0{*}2_12_1){:}3 }[/math] [math]\displaystyle{ (2_0{*}2_12_1){:}3 }[/math]
200 2/m 3 [math]\displaystyle{ 3{*}2 }[/math] Pm3 P 2/m 3 [math]\displaystyle{ \Gamma_cT_h^1 }[/math] 62s [math]\displaystyle{ \left ( a:a:a\right ) \cdot m/ \tilde 6 }[/math] [math]\displaystyle{ 4^- }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3 }[/math]
201 Pn3 P 2/n 3 [math]\displaystyle{ \Gamma_cT_h^2 }[/math] 49h [math]\displaystyle{ \left ( a:a:a\right ) \cdot \widetilde{ab} / \tilde 6 }[/math] [math]\displaystyle{ 4^{\circ+} }[/math] [math]\displaystyle{ (2\bar{*}_12_02_0){:}3 }[/math] [math]\displaystyle{ (2\bar{*}_12_02_0){:}3 }[/math]
202 Fm3 F 2/m 3 [math]\displaystyle{ \Gamma_c^fT_h^3 }[/math] 64s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot m/ \tilde 6 }[/math] [math]\displaystyle{ 2^- }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}3 }[/math]
203 Fd3 F 2/d 3 [math]\displaystyle{ \Gamma_c^fT_h^4 }[/math] 50h [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot \tfrac{1}{2}\widetilde{ab} / \tilde 6 }[/math] [math]\displaystyle{ 2^{\circ+} }[/math] [math]\displaystyle{ (2\bar{*}2_02_1){:}3 }[/math] [math]\displaystyle{ (2\bar{*}2_02_1){:}3 }[/math]
204 Im3 I 2/m 3 [math]\displaystyle{ \Gamma_c^vT_h^5 }[/math] 63s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot m/\tilde 6 }[/math] [math]\displaystyle{ 8^{-\circ} }[/math] [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}3 }[/math] [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}3 }[/math]
205 Pa3 P 21/a 3 [math]\displaystyle{ \Gamma_cT_h^6 }[/math] 91a [math]\displaystyle{ \left ( a:a:a\right ) \cdot \tilde a /\tilde 6 }[/math] [math]\displaystyle{ 2^-/4 }[/math] [math]\displaystyle{ (2_12\bar{*}{:}){:}3) }[/math] [math]\displaystyle{ (2_12\bar{*}{:}){:}3) }[/math]
206 Ia3 I 21/a 3 [math]\displaystyle{ \Gamma_c^vT_h^7 }[/math] 92a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot \tilde a /\tilde 6 }[/math] [math]\displaystyle{ 4^-/4 }[/math] [math]\displaystyle{ (*2_12{:}2{:}2){:}3 }[/math] [math]\displaystyle{ (*2_12{:}2{:}2){:}3 }[/math]
207 432 [math]\displaystyle{ 432 }[/math] P432 P 4 3 2 [math]\displaystyle{ \Gamma_cO^1 }[/math] 68s [math]\displaystyle{ \left ( a:a:a\right ) :4/3 }[/math] [math]\displaystyle{ 4^{\circ-} }[/math] [math]\displaystyle{ (*4_04_02_0){:}3 }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math]
208 P4232 P 42 3 2 [math]\displaystyle{ \Gamma_cO^2 }[/math] 98a [math]\displaystyle{ \left ( a:a:a\right ) :4_2//3 }[/math] [math]\displaystyle{ 4^+ }[/math] [math]\displaystyle{ (*4_24_22_0){:}3 }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math]
209 F432 F 4 3 2 [math]\displaystyle{ \Gamma_c^fO^3 }[/math] 70s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/3 }[/math] [math]\displaystyle{ 2^{\circ-} }[/math] [math]\displaystyle{ (*4_24_02_1){:}3 }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math]
210 F4132 F 41 3 2 [math]\displaystyle{ \Gamma_c^fO^4 }[/math] 97a [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//3 }[/math] [math]\displaystyle{ 2^+ }[/math] [math]\displaystyle{ (*4_34_12_0){:}3 }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math]
211 I432 I 4 3 2 [math]\displaystyle{ \Gamma_c^vO^5 }[/math] 69s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/3 }[/math] [math]\displaystyle{ 8^{+\circ} }[/math] [math]\displaystyle{ (4_24_02_1){:3} }[/math] [math]\displaystyle{ (2_1{*}2_02_0){:}6 }[/math]
212 P4332 P 43 3 2 [math]\displaystyle{ \Gamma_cO^6 }[/math] 94a [math]\displaystyle{ \left ( a:a:a\right ) :4_3//3 }[/math] [math]\displaystyle{ 2^+/4 }[/math] [math]\displaystyle{ (4_1{*}2_1){:}3 }[/math] [math]\displaystyle{ (2_12_1\bar{\times}){:}6 }[/math]
213 P4132 P 41 3 2 [math]\displaystyle{ \Gamma_cO^7 }[/math] 95a [math]\displaystyle{ \left ( a:a:a\right ) :4_1//3 }[/math] [math]\displaystyle{ 2^+/4 }[/math] [math]\displaystyle{ (4_1{*}2_1){:}3 }[/math] [math]\displaystyle{ (2_12_1\bar{\times}){:}6 }[/math]
214 I4132 I 41 3 2 [math]\displaystyle{ \Gamma_c^vO^8 }[/math] 96a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/:a:a:a\right ) :4_1//3 }[/math] [math]\displaystyle{ 4^+/4 }[/math] [math]\displaystyle{ (*4_34_12_0){:}3 }[/math] [math]\displaystyle{ (2_0{*}2_12_1){:}6 }[/math]
215 43m [math]\displaystyle{ *332 }[/math] P43m P 4 3 m [math]\displaystyle{ \Gamma_cT_d^1 }[/math] 65s [math]\displaystyle{ \left ( a:a:a\right ) :\tilde 4 /3 }[/math] [math]\displaystyle{ 2^\circ{:}2 }[/math] [math]\displaystyle{ (*4{\cdot}42_0){:}3 }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math]
216 F43m F 4 3 m [math]\displaystyle{ \Gamma_c^fT_d^2 }[/math] 67s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 /3 }[/math] [math]\displaystyle{ 1^\circ{:}2 }[/math] [math]\displaystyle{ (*4{\cdot}42_1){:}3 }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math]
217 I43m I 4 3 m [math]\displaystyle{ \Gamma_c^vT_d^3 }[/math] 66s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 /3 }[/math] [math]\displaystyle{ 4^\circ{:}2 }[/math] [math]\displaystyle{ (*{\cdot}44{:}2){:}3 }[/math] [math]\displaystyle{ (2_1{*}2_02_0){:}6 }[/math]
218 P43n P 4 3 n [math]\displaystyle{ \Gamma_cT_d^4 }[/math] 51h [math]\displaystyle{ \left ( a:a:a\right ) :\tilde 4 //3 }[/math] [math]\displaystyle{ 4^\circ }[/math] [math]\displaystyle{ (*4{:}42_0){:}3 }[/math] [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math]
219 F43c F 4 3 c [math]\displaystyle{ \Gamma_c^fT_d^5 }[/math] 52h [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 //3 }[/math] [math]\displaystyle{ 2^{\circ\circ} }[/math] [math]\displaystyle{ (*4{:}42_1){:}3 }[/math] [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math]
220 I43d I 4 3 d [math]\displaystyle{ \Gamma_c^vT_d^6 }[/math] 93a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 //3 }[/math] [math]\displaystyle{ 4^\circ/4 }[/math] [math]\displaystyle{ (4\bar{*}2_1){:}3 }[/math] [math]\displaystyle{ (2_0{*}2_12_1){:}6 }[/math]
221 4/m 3 2/m [math]\displaystyle{ *432 }[/math] Pm3m P 4/m 3 2/m [math]\displaystyle{ \Gamma_cO_h^1 }[/math] 71s [math]\displaystyle{ \left ( a:a:a\right ) :4/\tilde 6 \cdot m }[/math] [math]\displaystyle{ 4^-{:}2 }[/math] [math]\displaystyle{ [*{\cdot}4{\cdot}4{\cdot}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6 }[/math]
222 Pn3n P 4/n 3 2/n [math]\displaystyle{ \Gamma_cO_h^2 }[/math] 53h [math]\displaystyle{ \left ( a:a:a\right ) :4/\tilde 6 \cdot \widetilde{abc} }[/math] [math]\displaystyle{ 8^{\circ\circ} }[/math] [math]\displaystyle{ (*4_04{:}2){:}3 }[/math] [math]\displaystyle{ (2\bar{*}_12_02_0){:}6 }[/math]
223 Pm3n P 42/m 3 2/n [math]\displaystyle{ \Gamma_cO_h^3 }[/math] 102a [math]\displaystyle{ \left ( a:a:a\right ) :4_2//\tilde 6 \cdot \widetilde{abc} }[/math] [math]\displaystyle{ 8^\circ }[/math] [math]\displaystyle{ [*{\cdot}4{:}4{\cdot}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6 }[/math]
224 Pn3m P 42/n 3 2/m [math]\displaystyle{ \Gamma_cO_h^4 }[/math] 103a [math]\displaystyle{ \left ( a:a:a\right ) :4_2//\tilde 6 \cdot m }[/math] [math]\displaystyle{ 4^+{:}2 }[/math] [math]\displaystyle{ (*4_24{\cdot}2){:}3 }[/math] [math]\displaystyle{ (2\bar{*}_12_02_0){:}6 }[/math]
225 Fm3m F 4/m 3 2/m [math]\displaystyle{ \Gamma_c^fO_h^5 }[/math] 73s [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot m }[/math] [math]\displaystyle{ 2^-{:}2 }[/math] [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}6 }[/math]
226 Fm3c F 4/m 3 2/c [math]\displaystyle{ \Gamma_c^fO_h^6 }[/math] 54h [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot \tilde c }[/math] [math]\displaystyle{ 4^{--} }[/math] [math]\displaystyle{ [*{\cdot}4{:}4{:}2]{:}3 }[/math] [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}6 }[/math]
227 Fd3m F 41/d 3 2/m [math]\displaystyle{ \Gamma_c^fO_h^7 }[/math] 100a [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot m }[/math] [math]\displaystyle{ 2^+{:}2 }[/math] [math]\displaystyle{ (*4_14{\cdot}2){:}3 }[/math] [math]\displaystyle{ (2\bar{*}2_02_1){:}6 }[/math]
228 Fd3c F 41/d 3 2/c [math]\displaystyle{ \Gamma_c^fO_h^8 }[/math] 101a [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot \tilde c }[/math] [math]\displaystyle{ 4^{++} }[/math] [math]\displaystyle{ (*4_14{:}2){:}3 }[/math] [math]\displaystyle{ (2\bar{*}2_02_1){:}6 }[/math]
229 Im3m I 4/m 3 2/m [math]\displaystyle{ \Gamma_c^vO_h^9 }[/math] 72s [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/\tilde 6 \cdot m }[/math] [math]\displaystyle{ 8^\circ{:}2 }[/math] [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2]{:}3 }[/math] [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}6 }[/math]
230 Ia3d I 41/a 3 2/d [math]\displaystyle{ \Gamma_c^vO_h^{10} }[/math] 99a [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4_1//\tilde 6 \cdot \tfrac{1}{2}\widetilde{abc} }[/math] [math]\displaystyle{ 8^\circ/4 }[/math] [math]\displaystyle{ (*4_14{:}2){:}3 }[/math] [math]\displaystyle{ (*2_12{:}2{:}2){:}6 }[/math]

Notes

  1. The symbol [math]\displaystyle{ e }[/math] was introduced by the IUCR in 1992. Prior to this, the space groups Aem2 (No. 39), Aea2 (No. 41), Cmce (No. 64), Cmme (No. 67), and Ccce (No. 68) were known as Abm2 (No. 39), Aba2 (No. 41), Cmca (No. 64), Cmma (No. 67), and Ccca (No. 68) respectively. Historical literature may refer to the old names, but their meaning is unchanged.[1]

References

  1. de Wolff, P. M.; Billiet, Y.; Donnay, J. D. H.; Fischer, W.; Galiulin, R. B.; Glazer, A. M.; Hahn, T.; Senechal, M. et al. (1992-09-01). "Symbols for symmetry elements and symmetry operations. Final report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry". Acta Crystallographica Section A Foundations of Crystallography (International Union of Crystallography (IUCr)) 48 (5): 727–732. doi:10.1107/s0108767392003428. ISSN 0108-7673. 
  2. Bradley, C. J.; Cracknell, A. P. (2010). The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford New York: Clarendon Press. pp. 127–134. ISBN 978-0-19-958258-7. OCLC 859155300. 

External links