List of space groups
There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.
Symbols
In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.
These are the Bravais lattices in three dimensions:
- P primitive
- I body centered (from the German Innenzentriert)
- F face centered (from the German Flächenzentriert)
- A centered on A faces only
- B centered on B faces only
- C centered on C faces only
- R rhombohedral
A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.
- [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math], or [math]\displaystyle{ c }[/math]: glide translation along half the lattice vector of this face
- [math]\displaystyle{ n }[/math]: glide translation along half the diagonal of this face
- [math]\displaystyle{ d }[/math]: glide planes with translation along a quarter of a face diagonal
- [math]\displaystyle{ e }[/math]: two glides with the same glide plane and translation along two (different) half-lattice vectors.[note 1]
A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is [math]\displaystyle{ \color{Black}\tfrac{360^\circ}{n} }[/math]. The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of ½ of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of ⅓ of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.
Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction [math]\displaystyle{ \frac{n}{m} }[/math] or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.
In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form [math]\displaystyle{ \Gamma_x^y }[/math] which specifies the Bravais lattice. Here [math]\displaystyle{ x \in \{t, m, o, q, rh, h, c\} }[/math] is the lattice system, and [math]\displaystyle{ y \in \{\empty, b, v, f\} }[/math] is the centering type.[2]
In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.
Symmorphic
The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups, for example, the space groups P4/mmm ([math]\displaystyle{ P\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math], 36s) and I4/mmm ([math]\displaystyle{ I\tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math], 37s).
Hemisymmorphic
The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Hemisymmorphic space groups contain the axial combination 422, which are P4/mcc ([math]\displaystyle{ P\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{c} }[/math], 35h), P4/nbm ([math]\displaystyle{ P\tfrac{4}{n}\tfrac{2}{b}\tfrac{2}{m} }[/math], 36h), P4/nnc ([math]\displaystyle{ P\tfrac{4}{n}\tfrac{2}{n}\tfrac{2}{c} }[/math], 37h), and I4/mcm ([math]\displaystyle{ I\tfrac{4}{m}\tfrac{2}{c}\tfrac{2}{m} }[/math], 38h).
Asymmorphic
The remaining 103 space groups are asymmorphic, for example, those derived from the point group 4/mmm ([math]\displaystyle{ \tfrac{4}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math]).
List of triclinic
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Fibrifold |
---|---|---|---|---|---|---|---|---|
1 | 1 | [math]\displaystyle{ 1 }[/math] | P1 | P 1 | [math]\displaystyle{ \Gamma_tC_1^1 }[/math] | 1s | [math]\displaystyle{ (a/b/c)\cdot 1 }[/math] | [math]\displaystyle{ (\circ) }[/math] |
2 | 1 | [math]\displaystyle{ \times }[/math] | P1 | P 1 | [math]\displaystyle{ \Gamma_tC_i^1 }[/math] | 2s | [math]\displaystyle{ (a/b/c)\cdot \tilde 2 }[/math] | [math]\displaystyle{ (2222) }[/math] |
List of monoclinic
Simple (P) | Base (C) |
---|---|
Number | Point group | Orbifold | Short name | Full name(s) | Schoenflies | Fedorov | Shubnikov | Fibrifold (primary) | Fibrifold (secondary) | |
---|---|---|---|---|---|---|---|---|---|---|
3 | 2 | [math]\displaystyle{ 22 }[/math] | P2 | P 1 2 1 | P 1 1 2 | [math]\displaystyle{ \Gamma_mC_2^1 }[/math] | 3s | [math]\displaystyle{ (b:(c/a)):2 }[/math] | [math]\displaystyle{ (2_02_02_02_0) }[/math] | [math]\displaystyle{ ({*}_0{*}_0) }[/math] |
4 | P21 | P 1 21 1 | P 1 1 21 | [math]\displaystyle{ \Gamma_mC_2^2 }[/math] | 1a | [math]\displaystyle{ (b:(c/a)):2_1 }[/math] | [math]\displaystyle{ (2_12_12_12_1) }[/math] | [math]\displaystyle{ (\bar{\times}\bar{\times}) }[/math] | ||
5 | C2 | C 1 2 1 | B 1 1 2 | [math]\displaystyle{ \Gamma_m^bC_2^3 }[/math] | 4s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) :2 }[/math] | [math]\displaystyle{ (2_02_02_12_1) }[/math] | [math]\displaystyle{ ({*}_1{*}_1) }[/math], [math]\displaystyle{ ({*}\bar{\times}) }[/math] | ||
6 | m | [math]\displaystyle{ * }[/math] | Pm | P 1 m 1 | P 1 1 m | [math]\displaystyle{ \Gamma_mC_s^1 }[/math] | 5s | [math]\displaystyle{ (b:(c/a))\cdot m }[/math] | [math]\displaystyle{ [\circ_0] }[/math] | [math]\displaystyle{ ({*}{\cdot}{*}{\cdot}) }[/math] |
7 | Pc | P 1 c 1 | P 1 1 b | [math]\displaystyle{ \Gamma_mC_s^2 }[/math] | 1h | [math]\displaystyle{ (b:(c/a))\cdot \tilde c }[/math] | [math]\displaystyle{ (\bar\circ_0) }[/math] | [math]\displaystyle{ ({*}{:}{*}{:}) }[/math], [math]\displaystyle{ ({\times}{\times}_0) }[/math] | ||
8 | Cm | C 1 m 1 | B 1 1 m | [math]\displaystyle{ \Gamma_m^bC_s^3 }[/math] | 6s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m }[/math] | [math]\displaystyle{ [\circ_1] }[/math] | [math]\displaystyle{ ({*}{\cdot}{*}{:}) }[/math], [math]\displaystyle{ ({*}{\cdot}{\times}) }[/math] | ||
9 | Cc | C 1 c 1 | B 1 1 b | [math]\displaystyle{ \Gamma_m^bC_s^4 }[/math] | 2h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c }[/math] | [math]\displaystyle{ (\bar\circ_1) }[/math] | [math]\displaystyle{ ({*}{:}{\times}) }[/math], [math]\displaystyle{ ({\times}{\times}_1) }[/math] | ||
10 | 2/m | [math]\displaystyle{ 2* }[/math] | P2/m | P 1 2/m 1 | P 1 1 2/m | [math]\displaystyle{ \Gamma_mC_{2h}^1 }[/math] | 7s | [math]\displaystyle{ (b:(c/a))\cdot m:2 }[/math] | [math]\displaystyle{ [2_02_02_02_0] }[/math] | [math]\displaystyle{ [*2{\cdot}22{\cdot}2) }[/math] |
11 | P21/m | P 1 21/m 1 | P 1 1 21/m | [math]\displaystyle{ \Gamma_mC_{2h}^2 }[/math] | 2a | [math]\displaystyle{ (b:(c/a))\cdot m:2_1 }[/math] | [math]\displaystyle{ [2_12_12_12_1] }[/math] | [math]\displaystyle{ (22{*}{\cdot}) }[/math] | ||
12 | C2/m | C 1 2/m 1 | B 1 1 2/m | [math]\displaystyle{ \Gamma_m^bC_{2h}^3 }[/math] | 8s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot m:2 }[/math] | [math]\displaystyle{ [2_02_02_12_1] }[/math] | [math]\displaystyle{ (*2{\cdot}22{:}2) }[/math], [math]\displaystyle{ (2\bar{*}2{\cdot}2) }[/math] | ||
13 | P2/c | P 1 2/c 1 | P 1 1 2/b | [math]\displaystyle{ \Gamma_mC_{2h}^4 }[/math] | 3h | [math]\displaystyle{ (b:(c/a))\cdot \tilde c:2 }[/math] | [math]\displaystyle{ (2_02_022) }[/math] | [math]\displaystyle{ (*2{:}22{:}2) }[/math], [math]\displaystyle{ (22{*}_0) }[/math] | ||
14 | P21/c | P 1 21/c 1 | P 1 1 21/b | [math]\displaystyle{ \Gamma_mC_{2h}^5 }[/math] | 3a | [math]\displaystyle{ (b:(c/a))\cdot \tilde c:2_1 }[/math] | [math]\displaystyle{ (2_12_122) }[/math] | [math]\displaystyle{ (22{*}{:}) }[/math], [math]\displaystyle{ (22{\times}) }[/math] | ||
15 | C2/c | C 1 2/c 1 | B 1 1 2/b | [math]\displaystyle{ \Gamma_m^bC_{2h}^6 }[/math] | 4h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}/b:(c/a)\right ) \cdot \tilde c:2 }[/math] | [math]\displaystyle{ (2_02_122) }[/math] | [math]\displaystyle{ (2\bar{*}2{:}2) }[/math], [math]\displaystyle{ (22{*}_1) }[/math] |
List of orthorhombic
Simple (P) | Body (I) | Face (F) | Base (A or C) |
---|---|---|---|
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Fibrifold (primary) | Fibrifold (secondary) |
---|---|---|---|---|---|---|---|---|---|
16 | 222 | [math]\displaystyle{ 222 }[/math] | P222 | P 2 2 2 | [math]\displaystyle{ \Gamma_oD_2^1 }[/math] | 9s | [math]\displaystyle{ (c:a:b):2:2 }[/math] | [math]\displaystyle{ (*2_02_02_02_0) }[/math] | |
17 | P2221 | P 2 2 21 | [math]\displaystyle{ \Gamma_oD_2^2 }[/math] | 4a | [math]\displaystyle{ (c:a:b):2_1:2 }[/math] | [math]\displaystyle{ (*2_12_12_12_1) }[/math] | [math]\displaystyle{ (2_02_0{*}) }[/math] | ||
18 | P21212 | P 21 21 2 | [math]\displaystyle{ \Gamma_oD_2^3 }[/math] | 7a | [math]\displaystyle{ (c:a:b):2 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (2_02_0\bar{\times}) }[/math] | [math]\displaystyle{ (2_12_1{*}) }[/math] | ||
19 | P212121 | P 21 21 21 | [math]\displaystyle{ \Gamma_oD_2^4 }[/math] | 8a | [math]\displaystyle{ (c:a:b):2_1 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (2_12_1\bar{\times}) }[/math] | |||
20 | C2221 | C 2 2 21 | [math]\displaystyle{ \Gamma_o^bD_2^5 }[/math] | 5a | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :2_1:2 }[/math] | [math]\displaystyle{ (2_1{*}2_12_1) }[/math] | [math]\displaystyle{ (2_02_1{*}) }[/math] | ||
21 | C222 | C 2 2 2 | [math]\displaystyle{ \Gamma_o^bD_2^6 }[/math] | 10s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :2:2 }[/math] | [math]\displaystyle{ (2_0{*}2_02_0) }[/math] | [math]\displaystyle{ (*2_02_02_12_1) }[/math] | ||
22 | F222 | F 2 2 2 | [math]\displaystyle{ \Gamma_o^fD_2^7 }[/math] | 12s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :2:2 }[/math] | [math]\displaystyle{ (*2_02_12_02_1) }[/math] | |||
23 | I222 | I 2 2 2 | [math]\displaystyle{ \Gamma_o^vD_2^8 }[/math] | 11s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) :2:2 }[/math] | [math]\displaystyle{ (2_1{*}2_02_0) }[/math] | |||
24 | I212121 | I 21 21 21 | [math]\displaystyle{ \Gamma_o^vD_2^9 }[/math] | 6a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :2:2_1 }[/math] | [math]\displaystyle{ (2_0{*}2_12_1) }[/math] | |||
25 | mm2 | [math]\displaystyle{ *22 }[/math] | Pmm2 | P m m 2 | [math]\displaystyle{ \Gamma_oC_{2v}^1 }[/math] | 13s | [math]\displaystyle{ (c:a:b):m \cdot 2 }[/math] | [math]\displaystyle{ (*{\cdot}2{\cdot}2{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [{*}_0{\cdot}{*}_0{\cdot}] }[/math] |
26 | Pmc21 | P m c 21 | [math]\displaystyle{ \Gamma_oC_{2v}^2 }[/math] | 9a | [math]\displaystyle{ (c:a:b): \tilde c \cdot 2_1 }[/math] | [math]\displaystyle{ (*{\cdot}2{:}2{\cdot}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}{\cdot}) }[/math], [math]\displaystyle{ [{\times_0}{\times_0}] }[/math] | ||
27 | Pcc2 | P c c 2 | [math]\displaystyle{ \Gamma_oC_{2v}^3 }[/math] | 5h | [math]\displaystyle{ (c:a:b): \tilde c \cdot 2 }[/math] | [math]\displaystyle{ (*{:}2{:}2{:}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}_0\bar{*}_0) }[/math] | ||
28 | Pma2 | P m a 2 | [math]\displaystyle{ \Gamma_oC_{2v}^4 }[/math] | 6h | [math]\displaystyle{ (c:a:b): \tilde a \cdot 2 }[/math] | [math]\displaystyle{ (2_02_0{*}{\cdot}) }[/math] | [math]\displaystyle{ [{*}_0{:}{*}_0{:}] }[/math], [math]\displaystyle{ (*{\cdot}{*}_0) }[/math] | ||
29 | Pca21 | P c a 21 | [math]\displaystyle{ \Gamma_oC_{2v}^5 }[/math] | 11a | [math]\displaystyle{ (c:a:b): \tilde a \cdot 2_1 }[/math] | [math]\displaystyle{ (2_12_1{*}{:}) }[/math] | [math]\displaystyle{ (\bar{*}{:}\bar{*}{:}) }[/math] | ||
30 | Pnc2 | P n c 2 | [math]\displaystyle{ \Gamma_oC_{2v}^6 }[/math] | 7h | [math]\displaystyle{ (c:a:b): \tilde c \odot 2 }[/math] | [math]\displaystyle{ (2_02_0{*}{:}) }[/math] | [math]\displaystyle{ (\bar{*}_1\bar{*}_1) }[/math], [math]\displaystyle{ ({*}_0{\times}_0) }[/math] | ||
31 | Pmn21 | P m n 21 | [math]\displaystyle{ \Gamma_oC_{2v}^7 }[/math] | 10a | [math]\displaystyle{ (c:a:b): \widetilde{ac} \cdot 2_1 }[/math] | [math]\displaystyle{ (2_12_1{*}{\cdot}) }[/math] | [math]\displaystyle{ (*{\cdot}\bar{\times}) }[/math], [math]\displaystyle{ [{\times}_0{\times}_1] }[/math] | ||
32 | Pba2 | P b a 2 | [math]\displaystyle{ \Gamma_oC_{2v}^8 }[/math] | 9h | [math]\displaystyle{ (c:a:b): \tilde a \odot 2 }[/math] | [math]\displaystyle{ (2_02_0{\times}_0) }[/math] | [math]\displaystyle{ (*{:}{*}_0) }[/math] | ||
33 | Pna21 | P n a 21 | [math]\displaystyle{ \Gamma_oC_{2v}^9 }[/math] | 12a | [math]\displaystyle{ (c:a:b): \tilde a \odot 2_1 }[/math] | [math]\displaystyle{ (2_12_1{\times}) }[/math] | [math]\displaystyle{ (*{:}{\times}) }[/math], [math]\displaystyle{ ({\times}{\times}_1) }[/math] | ||
34 | Pnn2 | P n n 2 | [math]\displaystyle{ \Gamma_oC_{2v}^{10} }[/math] | 8h | [math]\displaystyle{ (c:a:b): \widetilde{ac} \odot 2 }[/math] | [math]\displaystyle{ (2_02_0{\times}_1) }[/math] | [math]\displaystyle{ (*_0{\times}_1) }[/math] | ||
35 | Cmm2 | C m m 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{11} }[/math] | 14s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2 }[/math] | [math]\displaystyle{ (2_0{*}{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [*_0{\cdot}{*}_0{:}] }[/math] | ||
36 | Cmc21 | C m c 21 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{12} }[/math] | 13a | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) :\tilde c \cdot 2_1 }[/math] | [math]\displaystyle{ (2_1{*}{\cdot}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}{:}) }[/math], [math]\displaystyle{ [{\times}_1{\times}_1] }[/math] | ||
37 | Ccc2 | C c c 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{13} }[/math] | 10h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) : \tilde c \cdot 2 }[/math] | [math]\displaystyle{ (2_0{*}{:}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}_0\bar{*}_1) }[/math] | ||
38 | Amm2 | A m m 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{14} }[/math] | 15s | [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ):m \cdot 2 }[/math] | [math]\displaystyle{ (*{\cdot}2{\cdot}2{\cdot}2{:}2) }[/math] | [math]\displaystyle{ [{*}_1{\cdot}{*}_1{\cdot}] }[/math], [math]\displaystyle{ [*{\cdot}{\times}_0] }[/math] | ||
39 | Aem2 | A b m 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{15} }[/math] | 11h | [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) :m \cdot 2_1 }[/math] | [math]\displaystyle{ (*{\cdot}2{:}2{:}2{:}2) }[/math] | [math]\displaystyle{ [{*}_1{:}{*}_1{:}] }[/math], [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}_0) }[/math] | ||
40 | Ama2 | A m a 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{16} }[/math] | 12h | [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2 }[/math] | [math]\displaystyle{ (2_02_1{*}{\cdot}) }[/math] | [math]\displaystyle{ (*{\cdot}{*}_1) }[/math], [math]\displaystyle{ [*{:}{\times}_1] }[/math] | ||
41 | Aea2 | A b a 2 | [math]\displaystyle{ \Gamma_o^bC_{2v}^{17} }[/math] | 13h | [math]\displaystyle{ \left ( \tfrac{b+c}{2}/c:a:b\right ) : \tilde a \cdot 2_1 }[/math] | [math]\displaystyle{ (2_02_1{*}{:}) }[/math] | [math]\displaystyle{ (*{:}{*}_1) }[/math], [math]\displaystyle{ (\bar{*}{:}\bar{*}_1) }[/math] | ||
42 | Fmm2 | F m m 2 | [math]\displaystyle{ \Gamma_o^fC_{2v}^{18} }[/math] | 17s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) :m \cdot 2 }[/math] | [math]\displaystyle{ (*{\cdot}2{\cdot}2{:}2{:}2) }[/math] | [math]\displaystyle{ [{*}_1{\cdot}{*}_1{:}] }[/math] | ||
43 | Fdd2 | F dd2 | [math]\displaystyle{ \Gamma_o^fC_{2v}^{19} }[/math] | 16h | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b \right ) : \tfrac{1}{2} \widetilde{ac} \odot 2 }[/math] | [math]\displaystyle{ (2_02_1{\times}) }[/math] | [math]\displaystyle{ ({*}_1{\times}) }[/math] | ||
44 | Imm2 | I m m 2 | [math]\displaystyle{ \Gamma_o^vC_{2v}^{20} }[/math] | 16s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) :m \cdot 2 }[/math] | [math]\displaystyle{ (2_1{*}{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [*{\cdot}{\times}_1] }[/math] | ||
45 | Iba2 | I b a 2 | [math]\displaystyle{ \Gamma_o^vC_{2v}^{21} }[/math] | 15h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde c \cdot 2 }[/math] | [math]\displaystyle{ (2_1{*}{:}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}{:}\bar{*}_0) }[/math] | ||
46 | Ima2 | I m a 2 | [math]\displaystyle{ \Gamma_o^vC_{2v}^{22} }[/math] | 14h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b \right ) : \tilde a \cdot 2 }[/math] | [math]\displaystyle{ (2_0{*}{\cdot}2{:}2) }[/math] | [math]\displaystyle{ (\bar{*}{\cdot}\bar{*}_1) }[/math], [math]\displaystyle{ [*{:}{\times}_0] }[/math] | ||
47 | [math]\displaystyle{ \tfrac{2}{m}\tfrac{2}{m}\tfrac{2}{m} }[/math] | [math]\displaystyle{ *222 }[/math] | Pmmm | P 2/m 2/m 2/m | [math]\displaystyle{ \Gamma_oD_{2h}^1 }[/math] | 18s | [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \cdot m }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2] }[/math] | |
48 | Pnnn | P 2/n 2/n 2/n | [math]\displaystyle{ \Gamma_oD_{2h}^2 }[/math] | 19h | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \widetilde{ac} }[/math] | [math]\displaystyle{ (2\bar{*}_12_02_0 }[/math] | |||
49 | Pccm | P 2/c 2/c 2/m | [math]\displaystyle{ \Gamma_oD_{2h}^3 }[/math] | 17h | [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \cdot \tilde c }[/math] | [math]\displaystyle{ [*{:}2{:}2{:}2{:}2] }[/math] | [math]\displaystyle{ (*2_02_02{\cdot}2) }[/math] | ||
50 | Pban | P 2/b 2/a 2/n | [math]\displaystyle{ \Gamma_oD_{2h}^4 }[/math] | 18h | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \odot \tilde a }[/math] | [math]\displaystyle{ (2\bar{*}_02_02_0) }[/math] | [math]\displaystyle{ (*2_02_02{:}2) }[/math] | ||
51 | Pmma | P 21/m 2/m 2/a | [math]\displaystyle{ \Gamma_oD_{2h}^5 }[/math] | 14a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a :2 \cdot m }[/math] | [math]\displaystyle{ [2_02_0{*}{\cdot}] }[/math] | [math]\displaystyle{ [*{\cdot}2{:}2{\cdot}2{:}2] }[/math], [math]\displaystyle{ [*2{\cdot}2{\cdot}2{\cdot}2] }[/math] | ||
52 | Pnna | P 2/n 21/n 2/a | [math]\displaystyle{ \Gamma_oD_{2h}^6 }[/math] | 17a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2 \odot \widetilde{ac} }[/math] | [math]\displaystyle{ (2_02\bar{*}_1) }[/math] | [math]\displaystyle{ (2_0{*}2{:}2) }[/math], [math]\displaystyle{ (2\bar{*}2_12_1) }[/math] | ||
53 | Pmna | P 2/m 2/n 21/a | [math]\displaystyle{ \Gamma_oD_{2h}^7 }[/math] | 15a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \cdot \widetilde{ac} }[/math] | [math]\displaystyle{ [2_02_0{*}{:}] }[/math] | [math]\displaystyle{ (*2_12_12{\cdot}2) }[/math], [math]\displaystyle{ (2_0{*}2{\cdot}2) }[/math] | ||
54 | Pcca | P 21/c 2/c 2/a | [math]\displaystyle{ \Gamma_oD_{2h}^8 }[/math] | 16a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2 \cdot \tilde c }[/math] | [math]\displaystyle{ (2_02\bar{*}_0) }[/math] | [math]\displaystyle{ (*2{:}2{:}2{:}2) }[/math], [math]\displaystyle{ (*2_12_12{:}2) }[/math] | ||
55 | Pbam | P 21/b 21/a 2/m | [math]\displaystyle{ \Gamma_oD_{2h}^9 }[/math] | 22a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \odot \tilde a }[/math] | [math]\displaystyle{ [2_02_0{\times}_0] }[/math] | [math]\displaystyle{ (*2{\cdot}2{:}2{\cdot}2) }[/math] | ||
56 | Pccn | P 21/c 21/c 2/n | [math]\displaystyle{ \Gamma_oD_{2h}^{10} }[/math] | 27a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot \tilde c }[/math] | [math]\displaystyle{ (2\bar{*}{:}2{:}2) }[/math] | [math]\displaystyle{ (2_12\bar{*}_0) }[/math] | ||
57 | Pbcm | P 2/b 21/c 21/m | [math]\displaystyle{ \Gamma_oD_{2h}^{11} }[/math] | 23a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2_1 \odot \tilde c }[/math] | [math]\displaystyle{ (2_02\bar{*}{\cdot}) }[/math] | [math]\displaystyle{ (*2{:}2{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_12_1{*}{:}] }[/math] | ||
58 | Pnnm | P 21/n 21/n 2/m | [math]\displaystyle{ \Gamma_oD_{2h}^{12} }[/math] | 25a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot m:2 \odot \widetilde{ac} }[/math] | [math]\displaystyle{ [2_02_0{\times}_1] }[/math] | [math]\displaystyle{ (2_1{*}2{\cdot}2) }[/math] | ||
59 | Pmmn | P 21/m 21/m 2/n | [math]\displaystyle{ \Gamma_oD_{2h}^{13} }[/math] | 24a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2 \cdot m }[/math] | [math]\displaystyle{ (2\bar{*}{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [2_12_1{*}{\cdot}] }[/math] | ||
60 | Pbcn | P 21/b 2/c 21/n | [math]\displaystyle{ \Gamma_oD_{2h}^{14} }[/math] | 26a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \widetilde{ab}:2_1 \odot \tilde c }[/math] | [math]\displaystyle{ (2_02\bar{*}{:}) }[/math] | [math]\displaystyle{ (2_1{*}2{:}2) }[/math], [math]\displaystyle{ (2_12\bar{*}_1) }[/math] | ||
61 | Pbca | P 21/b 21/c 21/a | [math]\displaystyle{ \Gamma_oD_{2h}^{15} }[/math] | 29a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot \tilde c }[/math] | [math]\displaystyle{ (2_12\bar{*}{:}) }[/math] | |||
62 | Pnma | P 21/n 21/m 21/a | [math]\displaystyle{ \Gamma_oD_{2h}^{16} }[/math] | 28a | [math]\displaystyle{ \left ( c:a:b \right ) \cdot \tilde a:2_1 \odot m }[/math] | [math]\displaystyle{ (2_12\bar{*}{\cdot}) }[/math] | [math]\displaystyle{ (2\bar{*}{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_12_1{\times}] }[/math] | ||
63 | Cmcm | C 2/m 2/c 21/m | [math]\displaystyle{ \Gamma_o^bD_{2h}^{17} }[/math] | 18a | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2_1 \cdot \tilde c }[/math] | [math]\displaystyle{ [2_02_1{*}{\cdot}] }[/math] | [math]\displaystyle{ (*2{\cdot}2{\cdot}2{:}2) }[/math], [math]\displaystyle{ [2_1{*}{\cdot}2{:}2] }[/math] | ||
64 | Cmce | C 2/m 2/c 21/a | [math]\displaystyle{ \Gamma_o^bD_{2h}^{18} }[/math] | 19a | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2_1 \cdot \tilde c }[/math] | [math]\displaystyle{ [2_02_1{*}{:}] }[/math] | [math]\displaystyle{ (*2{\cdot}2{:}2{:}2) }[/math], [math]\displaystyle{ (*2_12{\cdot}2{:}2) }[/math] | ||
65 | Cmmm | C 2/m 2/m 2/m | [math]\displaystyle{ \Gamma_o^bD_{2h}^{19} }[/math] | 19s | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m }[/math] | [math]\displaystyle{ [2_0{*}{\cdot}2{\cdot}2] }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{:}2] }[/math] | ||
66 | Cccm | C 2/c 2/c 2/m | [math]\displaystyle{ \Gamma_o^bD_{2h}^{20} }[/math] | 20h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot \tilde c }[/math] | [math]\displaystyle{ [2_0{*}{:}2{:}2] }[/math] | [math]\displaystyle{ (*2_02_12{\cdot}2) }[/math] | ||
67 | Cmme | C 2/m 2/m 2/e | [math]\displaystyle{ \Gamma_o^bD_{2h}^{21} }[/math] | 21h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot m }[/math] | [math]\displaystyle{ (*2_02{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [*{\cdot}2{:}2{:}2{:}2] }[/math] | ||
68 | Ccce | C 2/c 2/c 2/e | [math]\displaystyle{ \Gamma_o^bD_{2h}^{22} }[/math] | 22h | [math]\displaystyle{ \left ( \tfrac{a+b}{2}:c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c }[/math] | [math]\displaystyle{ (*2_02{:}2{:}2) }[/math] | [math]\displaystyle{ (*2_02_12{:}2) }[/math] | ||
69 | Fmmm | F 2/m 2/m 2/m | [math]\displaystyle{ \Gamma_o^fD_{2h}^{23} }[/math] | 21s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot m:2 \cdot m }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2] }[/math] | |||
70 | Fddd | F 2/d 2/d 2/d | [math]\displaystyle{ \Gamma_o^fD_{2h}^{24} }[/math] | 24h | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:c:a:b\right ) \cdot \tfrac{1}{2}\widetilde{ab}:2 \odot \tfrac{1}{2}\widetilde{ac} }[/math] | [math]\displaystyle{ (2\bar{*}2_02_1) }[/math] | |||
71 | Immm | I 2/m 2/m 2/m | [math]\displaystyle{ \Gamma_o^vD_{2h}^{25} }[/math] | 20s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot m }[/math] | [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2] }[/math] | |||
72 | Ibam | I 2/b 2/a 2/m | [math]\displaystyle{ \Gamma_o^vD_{2h}^{26} }[/math] | 23h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot m:2 \cdot \tilde c }[/math] | [math]\displaystyle{ [2_1{*}{:}2{:}2] }[/math] | [math]\displaystyle{ (*2_02{\cdot}2{:}2) }[/math] | ||
73 | Ibca | I 2/b 2/c 2/a | [math]\displaystyle{ \Gamma_o^vD_{2h}^{27} }[/math] | 21a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot \tilde c }[/math] | [math]\displaystyle{ (*2_12{:}2{:}2) }[/math] | |||
74 | Imma | I 2/m 2/m 2/a | [math]\displaystyle{ \Gamma_o^vD_{2h}^{28} }[/math] | 20a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:b\right ) \cdot \tilde a :2 \cdot m }[/math] | [math]\displaystyle{ (*2_12{\cdot}2{\cdot}2) }[/math] | [math]\displaystyle{ [2_0{*}{\cdot}2{:}2] }[/math] |
List of tetragonal
Simple (P) | Body (I) |
---|---|
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Fibrifold |
---|---|---|---|---|---|---|---|---|
75 | 4 | [math]\displaystyle{ 44 }[/math] | P4 | P 4 | [math]\displaystyle{ \Gamma_qC_4^1 }[/math] | 22s | [math]\displaystyle{ (c:a:a):4 }[/math] | [math]\displaystyle{ (4_04_02_0) }[/math] |
76 | P41 | P 41 | [math]\displaystyle{ \Gamma_qC_4^2 }[/math] | 30a | [math]\displaystyle{ (c:a:a) :4_1 }[/math] | [math]\displaystyle{ (4_14_12_1) }[/math] | ||
77 | P42 | P 42 | [math]\displaystyle{ \Gamma_qC_4^3 }[/math] | 33a | [math]\displaystyle{ (c:a:a) :4_2 }[/math] | [math]\displaystyle{ (4_24_22_0) }[/math] | ||
78 | P43 | P 43 | [math]\displaystyle{ \Gamma_qC_4^4 }[/math] | 31a | [math]\displaystyle{ (c:a:a) :4_3 }[/math] | [math]\displaystyle{ (4_14_12_1) }[/math] | ||
79 | I4 | I 4 | [math]\displaystyle{ \Gamma_q^vC_4^5 }[/math] | 23s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4 }[/math] | [math]\displaystyle{ (4_24_02_1) }[/math] | ||
80 | I41 | I 41 | [math]\displaystyle{ \Gamma_q^vC_4^6 }[/math] | 32a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1 }[/math] | [math]\displaystyle{ (4_34_12_0) }[/math] | ||
81 | 4 | [math]\displaystyle{ 2\times }[/math] | P4 | P 4 | [math]\displaystyle{ \Gamma_qS_4^1 }[/math] | 26s | [math]\displaystyle{ (c:a:a):\tilde 4 }[/math] | [math]\displaystyle{ (442_0) }[/math] |
82 | I4 | I 4 | [math]\displaystyle{ \Gamma_q^vS_4^2 }[/math] | 27s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 }[/math] | [math]\displaystyle{ (442_1) }[/math] | ||
83 | 4/m | [math]\displaystyle{ 4* }[/math] | P4/m | P 4/m | [math]\displaystyle{ \Gamma_qC_{4h}^1 }[/math] | 28s | [math]\displaystyle{ (c:a:a)\cdot m:4 }[/math] | [math]\displaystyle{ [4_04_02_0] }[/math] |
84 | P42/m | P 42/m | [math]\displaystyle{ \Gamma_qC_{4h}^2 }[/math] | 41a | [math]\displaystyle{ (c:a:a)\cdot m:4_2 }[/math] | [math]\displaystyle{ [4_24_22_0] }[/math] | ||
85 | P4/n | P 4/n | [math]\displaystyle{ \Gamma_qC_{4h}^3 }[/math] | 29h | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4 }[/math] | [math]\displaystyle{ (44_02) }[/math] | ||
86 | P42/n | P 42/n | [math]\displaystyle{ \Gamma_qC_{4h}^4 }[/math] | 42a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2 }[/math] | [math]\displaystyle{ (44_22) }[/math] | ||
87 | I4/m | I 4/m | [math]\displaystyle{ \Gamma_q^vC_{4h}^5 }[/math] | 29s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4 }[/math] | [math]\displaystyle{ [4_24_02_1] }[/math] | ||
88 | I41/a | I 41/a | [math]\displaystyle{ \Gamma_q^vC_{4h}^6 }[/math] | 40a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1 }[/math] | [math]\displaystyle{ (44_12) }[/math] | ||
89 | 422 | [math]\displaystyle{ 224 }[/math] | P422 | P 4 2 2 | [math]\displaystyle{ \Gamma_qD_4^1 }[/math] | 30s | [math]\displaystyle{ (c:a:a):4:2 }[/math] | [math]\displaystyle{ (*4_04_02_0) }[/math] |
90 | P4212 | P4212 | [math]\displaystyle{ \Gamma_qD_4^2 }[/math] | 43a | [math]\displaystyle{ (c:a:a):4 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (4_0{*}2_0) }[/math] | ||
91 | P4122 | P 41 2 2 | [math]\displaystyle{ \Gamma_qD_4^3 }[/math] | 44a | [math]\displaystyle{ (c:a:a):4_1:2 }[/math] | [math]\displaystyle{ (*4_14_12_1) }[/math] | ||
92 | P41212 | P 41 21 2 | [math]\displaystyle{ \Gamma_qD_4^4 }[/math] | 48a | [math]\displaystyle{ (c:a:a):4_1 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (4_1{*}2_1) }[/math] | ||
93 | P4222 | P 42 2 2 | [math]\displaystyle{ \Gamma_qD_4^5 }[/math] | 47a | [math]\displaystyle{ (c:a:a):4_2:2 }[/math] | [math]\displaystyle{ (*4_24_22_0) }[/math] | ||
94 | P42212 | P 42 21 2 | [math]\displaystyle{ \Gamma_qD_4^6 }[/math] | 50a | [math]\displaystyle{ (c:a:a):4_2 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (4_2{*}2_0) }[/math] | ||
95 | P4322 | P 43 2 2 | [math]\displaystyle{ \Gamma_qD_4^7 }[/math] | 45a | [math]\displaystyle{ (c:a:a):4_3:2 }[/math] | [math]\displaystyle{ (*4_14_12_1) }[/math] | ||
96 | P43212 | P 43 21 2 | [math]\displaystyle{ \Gamma_qD_4^8 }[/math] | 49a | [math]\displaystyle{ (c:a:a):4_3 }[/math] [math]\displaystyle{ 2_1 }[/math] | [math]\displaystyle{ (4_1{*}2_1) }[/math] | ||
97 | I422 | I 4 2 2 | [math]\displaystyle{ \Gamma_q^vD_4^9 }[/math] | 31s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2 }[/math] | [math]\displaystyle{ (*4_24_02_1) }[/math] | ||
98 | I4122 | I 41 2 2 | [math]\displaystyle{ \Gamma_q^vD_4^{10} }[/math] | 46a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4:2_1 }[/math] | [math]\displaystyle{ (*4_34_12_0) }[/math] | ||
99 | 4mm | [math]\displaystyle{ *44 }[/math] | P4mm | P 4 m m | [math]\displaystyle{ \Gamma_qC_{4v}^1 }[/math] | 24s | [math]\displaystyle{ (c:a:a):4\cdot m }[/math] | [math]\displaystyle{ (*{\cdot}4{\cdot}4{\cdot}2) }[/math] |
100 | P4bm | P 4 b m | [math]\displaystyle{ \Gamma_qC_{4v}^2 }[/math] | 26h | [math]\displaystyle{ (c:a:a):4\odot \tilde a }[/math] | [math]\displaystyle{ (4_0{*}{\cdot}2) }[/math] | ||
101 | P42cm | P 42 c m | [math]\displaystyle{ \Gamma_qC_{4v}^3 }[/math] | 37a | [math]\displaystyle{ (c:a:a):4_2\cdot \tilde c }[/math] | [math]\displaystyle{ (*{:}4{\cdot}4{:}2) }[/math] | ||
102 | P42nm | P 42 n m | [math]\displaystyle{ \Gamma_qC_{4v}^4 }[/math] | 38a | [math]\displaystyle{ (c:a:a):4_2\odot \widetilde{ac} }[/math] | [math]\displaystyle{ (4_2{*}{\cdot}2) }[/math] | ||
103 | P4cc | P 4 c c | [math]\displaystyle{ \Gamma_qC_{4v}^5 }[/math] | 25h | [math]\displaystyle{ (c:a:a):4\cdot \tilde c }[/math] | [math]\displaystyle{ (*{:}4{:}4{:}2) }[/math] | ||
104 | P4nc | P 4 n c | [math]\displaystyle{ \Gamma_qC_{4v}^6 }[/math] | 27h | [math]\displaystyle{ (c:a:a):4\odot \widetilde{ac} }[/math] | [math]\displaystyle{ (4_0{*}{:}2) }[/math] | ||
105 | P42mc | P 42 m c | [math]\displaystyle{ \Gamma_qC_{4v}^7 }[/math] | 36a | [math]\displaystyle{ (c:a:a):4_2\cdot m }[/math] | [math]\displaystyle{ (*{\cdot}4{:}4{\cdot}2) }[/math] | ||
106 | P42bc | P 42 b c | [math]\displaystyle{ \Gamma_qC_{4v}^8 }[/math] | 39a | [math]\displaystyle{ (c:a:a):4\odot \tilde a }[/math] | [math]\displaystyle{ (4_2{*}{:}2) }[/math] | ||
107 | I4mm | I 4 m m | [math]\displaystyle{ \Gamma_q^vC_{4v}^9 }[/math] | 25s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot m }[/math] | [math]\displaystyle{ (*{\cdot}4{\cdot}4{:}2) }[/math] | ||
108 | I4cm | I 4 c m | [math]\displaystyle{ \Gamma_q^vC_{4v}^{10} }[/math] | 28h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4\cdot \tilde c }[/math] | [math]\displaystyle{ (*{\cdot}4{:}4{:}2) }[/math] | ||
109 | I41md | I 41 m d | [math]\displaystyle{ \Gamma_q^vC_{4v}^{11} }[/math] | 34a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot m }[/math] | [math]\displaystyle{ (4_1{*}{\cdot}2) }[/math] | ||
110 | I41cd | I 41 c d | [math]\displaystyle{ \Gamma_q^vC_{4v}^{12} }[/math] | 35a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :4_1\odot \tilde c }[/math] | [math]\displaystyle{ (4_1{*}{:}2) }[/math] | ||
111 | 42m | [math]\displaystyle{ 2{*}2 }[/math] | P42m | P 4 2 m | [math]\displaystyle{ \Gamma_qD_{2d}^1 }[/math] | 32s | [math]\displaystyle{ (c:a:a):\tilde 4 :2 }[/math] | [math]\displaystyle{ (*4{\cdot}42_0) }[/math] |
112 | P42c | P 4 2 c | [math]\displaystyle{ \Gamma_qD_{2d}^2 }[/math] | 30h | [math]\displaystyle{ (c:a:a):\tilde 4 }[/math] [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ (*4{:}42_0) }[/math] | ||
113 | P421m | P 4 21 m | [math]\displaystyle{ \Gamma_qD_{2d}^3 }[/math] | 52a | [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{ab} }[/math] | [math]\displaystyle{ (4\bar{*}{\cdot}2) }[/math] | ||
114 | P421c | P 4 21 c | [math]\displaystyle{ \Gamma_qD_{2d}^4 }[/math] | 53a | [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{abc} }[/math] | [math]\displaystyle{ (4\bar{*}{:}2) }[/math] | ||
115 | P4m2 | P 4 m 2 | [math]\displaystyle{ \Gamma_qD_{2d}^5 }[/math] | 33s | [math]\displaystyle{ (c:a:a):\tilde 4 \cdot m }[/math] | [math]\displaystyle{ (*{\cdot}44{\cdot}2) }[/math] | ||
116 | P4c2 | P 4 c 2 | [math]\displaystyle{ \Gamma_qD_{2d}^6 }[/math] | 31h | [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \tilde c }[/math] | [math]\displaystyle{ (*{:}44{:}2) }[/math] | ||
117 | P4b2 | P 4 b 2 | [math]\displaystyle{ \Gamma_qD_{2d}^7 }[/math] | 32h | [math]\displaystyle{ (c:a:a):\tilde 4 \odot \tilde a }[/math] | [math]\displaystyle{ (4\bar{*}_02_0) }[/math] | ||
118 | P4n2 | P 4 n 2 | [math]\displaystyle{ \Gamma_qD_{2d}^8 }[/math] | 33h | [math]\displaystyle{ (c:a:a):\tilde 4 \cdot \widetilde{ac} }[/math] | [math]\displaystyle{ (4\bar{*}_12_0) }[/math] | ||
119 | I4m2 | I 4 m 2 | [math]\displaystyle{ \Gamma_q^vD_{2d}^9 }[/math] | 35s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot m }[/math] | [math]\displaystyle{ (*4{\cdot}42_1) }[/math] | ||
120 | I4c2 | I 4 c 2 | [math]\displaystyle{ \Gamma_q^vD_{2d}^{10} }[/math] | 34h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \cdot \tilde c }[/math] | [math]\displaystyle{ (*4{:}42_1) }[/math] | ||
121 | I42m | I 4 2 m | [math]\displaystyle{ \Gamma_q^vD_{2d}^{11} }[/math] | 34s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 :2 }[/math] | [math]\displaystyle{ (*{\cdot}44{:}2) }[/math] | ||
122 | I42d | I 4 2 d | [math]\displaystyle{ \Gamma_q^vD_{2d}^{12} }[/math] | 51a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) :\tilde 4 \odot \tfrac{1}{2}\widetilde{abc} }[/math] | [math]\displaystyle{ (4\bar{*}2_1) }[/math] | ||
123 | 4/m 2/m 2/m | [math]\displaystyle{ *224 }[/math] | P4/mmm | P 4/m 2/m 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^1 }[/math] | 36s | [math]\displaystyle{ (c:a:a)\cdot m:4\cdot m }[/math] | [math]\displaystyle{ [*{\cdot}4{\cdot}4{\cdot}2] }[/math] |
124 | P4/mcc | P 4/m 2/c 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^2 }[/math] | 35h | [math]\displaystyle{ (c:a:a)\cdot m:4\cdot \tilde c }[/math] | [math]\displaystyle{ [*{:}4{:}4{:}2] }[/math] | ||
125 | P4/nbm | P 4/n 2/b 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^3 }[/math] | 36h | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\odot \tilde a }[/math] | [math]\displaystyle{ (*4_04{\cdot}2) }[/math] | ||
126 | P4/nnc | P 4/n 2/n 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^4 }[/math] | 37h | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\odot \widetilde{ac} }[/math] | [math]\displaystyle{ (*4_04{:}2) }[/math] | ||
127 | P4/mbm | P 4/m 21/b 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^5 }[/math] | 54a | [math]\displaystyle{ (c:a:a)\cdot m:4\odot \tilde a }[/math] | [math]\displaystyle{ [4_0{*}{\cdot}2] }[/math] | ||
128 | P4/mnc | P 4/m 21/n 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^6 }[/math] | 56a | [math]\displaystyle{ (c:a:a)\cdot m:4\odot \widetilde{ac} }[/math] | [math]\displaystyle{ [4_0{*}{:}2] }[/math] | ||
129 | P4/nmm | P 4/n 21/m 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^7 }[/math] | 55a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\cdot m }[/math] | [math]\displaystyle{ (*4{\cdot}4{\cdot}2) }[/math] | ||
130 | P4/ncc | P 4/n 21/c 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^8 }[/math] | 57a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4\cdot \tilde c }[/math] | [math]\displaystyle{ (*4{:}4{:}2) }[/math] | ||
131 | P42/mmc | P 42/m 2/m 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^9 }[/math] | 60a | [math]\displaystyle{ (c:a:a)\cdot m:4_2\cdot m }[/math] | [math]\displaystyle{ [*{\cdot}4{:}4{\cdot}2] }[/math] | ||
132 | P42/mcm | P 42/m 2/c 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^{10} }[/math] | 61a | [math]\displaystyle{ (c:a:a)\cdot m:4_2\cdot \tilde c }[/math] | [math]\displaystyle{ [*{:}4{\cdot}4{:}2] }[/math] | ||
133 | P42/nbc | P 42/n 2/b 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^{11} }[/math] | 63a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\odot \tilde a }[/math] | [math]\displaystyle{ (*4_24{:}2) }[/math] | ||
134 | P42/nnm | P 42/n 2/n 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^{12} }[/math] | 62a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\odot \widetilde{ac} }[/math] | [math]\displaystyle{ (*4_24{\cdot}2) }[/math] | ||
135 | P42/mbc | P 42/m 21/b 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^{13} }[/math] | 66a | [math]\displaystyle{ (c:a:a)\cdot m:4_2\odot \tilde a }[/math] | [math]\displaystyle{ [4_2{*}{:}2] }[/math] | ||
136 | P42/mnm | P 42/m 21/n 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^{14} }[/math] | 65a | [math]\displaystyle{ (c:a:a)\cdot m:4_2\odot \widetilde{ac} }[/math] | [math]\displaystyle{ [4_2{*}{\cdot}2] }[/math] | ||
137 | P42/nmc | P 42/n 21/m 2/c | [math]\displaystyle{ \Gamma_qD_{4h}^{15} }[/math] | 67a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\cdot m }[/math] | [math]\displaystyle{ (*4{\cdot}4{:}2) }[/math] | ||
138 | P42/ncm | P 42/n 21/c 2/m | [math]\displaystyle{ \Gamma_qD_{4h}^{16} }[/math] | 65a | [math]\displaystyle{ (c:a:a)\cdot \widetilde{ab}:4_2\cdot \tilde c }[/math] | [math]\displaystyle{ (*4{:}4{\cdot}2) }[/math] | ||
139 | I4/mmm | I 4/m 2/m 2/m | [math]\displaystyle{ \Gamma_q^vD_{4h}^{17} }[/math] | 37s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot m }[/math] | [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2] }[/math] | ||
140 | I4/mcm | I 4/m 2/c 2/m | [math]\displaystyle{ \Gamma_q^vD_{4h}^{18} }[/math] | 38h | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot m:4\cdot \tilde c }[/math] | [math]\displaystyle{ [*{\cdot}4{:}4{:}2] }[/math] | ||
141 | I41/amd | I 41/a 2/m 2/d | [math]\displaystyle{ \Gamma_q^vD_{4h}^{19} }[/math] | 59a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot m }[/math] | [math]\displaystyle{ (*4_14{\cdot}2) }[/math] | ||
142 | I41/acd | I 41/a 2/c 2/d | [math]\displaystyle{ \Gamma_q^vD_{4h}^{20} }[/math] | 58a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/c:a:a\right ) \cdot \tilde a :4_1\odot \tilde c }[/math] | [math]\displaystyle{ (*4_14{:}2) }[/math] |
List of trigonal
Rhombohedral (R) | Hexagonal (P) |
---|---|
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Fibrifold |
---|---|---|---|---|---|---|---|---|
143 | 3 | [math]\displaystyle{ 33 }[/math] | P3 | P 3 | [math]\displaystyle{ \Gamma_hC_3^1 }[/math] | 38s | [math]\displaystyle{ (c:(a/a)):3 }[/math] | [math]\displaystyle{ (3_03_03_0) }[/math] |
144 | P31 | P 31 | [math]\displaystyle{ \Gamma_hC_3^2 }[/math] | 68a | [math]\displaystyle{ (c:(a/a)):3_1 }[/math] | [math]\displaystyle{ (3_13_13_1) }[/math] | ||
145 | P32 | P 32 | [math]\displaystyle{ \Gamma_hC_3^3 }[/math] | 69a | [math]\displaystyle{ (c:(a/a)):3_2 }[/math] | [math]\displaystyle{ (3_13_13_1) }[/math] | ||
146 | R3 | R 3 | [math]\displaystyle{ \Gamma_{rh}C_3^4 }[/math] | 39s | [math]\displaystyle{ (a/a/a)/3 }[/math] | [math]\displaystyle{ (3_03_13_2) }[/math] | ||
147 | 3 | [math]\displaystyle{ 3\times }[/math] | P3 | P 3 | [math]\displaystyle{ \Gamma_hC_{3i}^1 }[/math] | 51s | [math]\displaystyle{ (c:(a/a)):\tilde 6 }[/math] | [math]\displaystyle{ (63_02) }[/math] |
148 | R3 | R 3 | [math]\displaystyle{ \Gamma_{rh}C_{3i}^2 }[/math] | 52s | [math]\displaystyle{ (a/a/a)/\tilde 6 }[/math] | [math]\displaystyle{ (63_12) }[/math] | ||
149 | 32 | [math]\displaystyle{ 223 }[/math] | P312 | P 3 1 2 | [math]\displaystyle{ \Gamma_hD_3^1 }[/math] | 45s | [math]\displaystyle{ (c:(a/a)):2:3 }[/math] | [math]\displaystyle{ (*3_03_03_0) }[/math] |
150 | P321 | P 3 2 1 | [math]\displaystyle{ \Gamma_hD_3^2 }[/math] | 44s | [math]\displaystyle{ (c:(a/a))\cdot 2:3 }[/math] | [math]\displaystyle{ (3_0{*}3_0) }[/math] | ||
151 | P3112 | P 31 1 2 | [math]\displaystyle{ \Gamma_hD_3^3 }[/math] | 72a | [math]\displaystyle{ (c:(a/a)):2:3_1 }[/math] | [math]\displaystyle{ (*3_13_13_1) }[/math] | ||
152 | P3121 | P 31 2 1 | [math]\displaystyle{ \Gamma_hD_3^4 }[/math] | 70a | [math]\displaystyle{ (c:(a/a))\cdot 2:3_1 }[/math] | [math]\displaystyle{ (3_1{*}3_1) }[/math] | ||
153 | P3212 | P 32 1 2 | [math]\displaystyle{ \Gamma_hD_3^5 }[/math] | 73a | [math]\displaystyle{ (c:(a/a)):2:3_2 }[/math] | [math]\displaystyle{ (*3_13_13_1) }[/math] | ||
154 | P3221 | P 32 2 1 | [math]\displaystyle{ \Gamma_hD_3^6 }[/math] | 71a | [math]\displaystyle{ (c:(a/a))\cdot 2:3_2 }[/math] | [math]\displaystyle{ (3_1{*}3_1) }[/math] | ||
155 | R32 | R 3 2 | [math]\displaystyle{ \Gamma_{rh}D_3^7 }[/math] | 46s | [math]\displaystyle{ (a/a/a)/3:2 }[/math] | [math]\displaystyle{ (*3_03_13_2) }[/math] | ||
156 | 3m | [math]\displaystyle{ *33 }[/math] | P3m1 | P 3 m 1 | [math]\displaystyle{ \Gamma_hC_{3v}^1 }[/math] | 40s | [math]\displaystyle{ (c:(a/a)):m\cdot 3 }[/math] | [math]\displaystyle{ (*{\cdot}3{\cdot}3{\cdot}3) }[/math] |
157 | P31m | P 3 1 m | [math]\displaystyle{ \Gamma_hC_{3v}^2 }[/math] | 41s | [math]\displaystyle{ (c:(a/a))\cdot m\cdot 3 }[/math] | [math]\displaystyle{ (3_0{*}{\cdot}3) }[/math] | ||
158 | P3c1 | P 3 c 1 | [math]\displaystyle{ \Gamma_hC_{3v}^3 }[/math] | 39h | [math]\displaystyle{ (c:(a/a)):\tilde c:3 }[/math] | [math]\displaystyle{ (*{:}3{:}3{:}3) }[/math] | ||
159 | P31c | P 3 1 c | [math]\displaystyle{ \Gamma_hC_{3v}^4 }[/math] | 40h | [math]\displaystyle{ (c:(a/a))\cdot\tilde c :3 }[/math] | [math]\displaystyle{ (3_0{*}{:}3) }[/math] | ||
160 | R3m | R 3 m | [math]\displaystyle{ \Gamma_{rh}C_{3v}^5 }[/math] | 42s | [math]\displaystyle{ (a/a/a)/3\cdot m }[/math] | [math]\displaystyle{ (3_1{*}{\cdot}3) }[/math] | ||
161 | R3c | R 3 c | [math]\displaystyle{ \Gamma_{rh}C_{3v}^6 }[/math] | 41h | [math]\displaystyle{ (a/a/a)/3\cdot\tilde c }[/math] | [math]\displaystyle{ (3_1{*}{:}3) }[/math] | ||
162 | 3 2/m | [math]\displaystyle{ 2{*}3 }[/math] | P31m | P 3 1 2/m | [math]\displaystyle{ \Gamma_hD_{3d}^1 }[/math] | 56s | [math]\displaystyle{ (c:(a/a))\cdot m\cdot\tilde 6 }[/math] | [math]\displaystyle{ (*{\cdot}63_02) }[/math] |
163 | P31c | P 3 1 2/c | [math]\displaystyle{ \Gamma_hD_{3d}^2 }[/math] | 46h | [math]\displaystyle{ (c:(a/a))\cdot\tilde c \cdot\tilde 6 }[/math] | [math]\displaystyle{ (*{:}63_02) }[/math] | ||
164 | P3m1 | P 3 2/m 1 | [math]\displaystyle{ \Gamma_hD_{3d}^3 }[/math] | 55s | [math]\displaystyle{ (c:(a/a)):m\cdot\tilde 6 }[/math] | [math]\displaystyle{ (*6{\cdot}3{\cdot}2) }[/math] | ||
165 | P3c1 | P 3 2/c 1 | [math]\displaystyle{ \Gamma_hD_{3d}^4 }[/math] | 45h | [math]\displaystyle{ (c:(a/a)):\tilde c \cdot\tilde 6 }[/math] | [math]\displaystyle{ (*6{:}3{:}2) }[/math] | ||
166 | R3m | R 3 2/m | [math]\displaystyle{ \Gamma_{rh}D_{3d}^5 }[/math] | 57s | [math]\displaystyle{ (a/a/a)/\tilde 6 \cdot m }[/math] | [math]\displaystyle{ (*{\cdot}63_12) }[/math] | ||
167 | R3c | R 3 2/c | [math]\displaystyle{ \Gamma_{rh}D_{3d}^6 }[/math] | 47h | [math]\displaystyle{ (a/a/a)/\tilde 6 \cdot\tilde c }[/math] | [math]\displaystyle{ (*{:}63_12) }[/math] |
List of hexagonal
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Fibrifold |
---|---|---|---|---|---|---|---|---|
168 | 6 | [math]\displaystyle{ 66 }[/math] | P6 | P 6 | [math]\displaystyle{ \Gamma_hC_6^1 }[/math] | 49s | [math]\displaystyle{ (c:(a/a)):6 }[/math] | [math]\displaystyle{ (6_03_02_0) }[/math] |
169 | P61 | P 61 | [math]\displaystyle{ \Gamma_hC_6^2 }[/math] | 74a | [math]\displaystyle{ (c:(a/a)):6_1 }[/math] | [math]\displaystyle{ (6_13_12_1) }[/math] | ||
170 | P65 | P 65 | [math]\displaystyle{ \Gamma_hC_6^3 }[/math] | 75a | [math]\displaystyle{ (c:(a/a)):6_5 }[/math] | [math]\displaystyle{ (6_13_12_1) }[/math] | ||
171 | P62 | P 62 | [math]\displaystyle{ \Gamma_hC_6^4 }[/math] | 76a | [math]\displaystyle{ (c:(a/a)):6_2 }[/math] | [math]\displaystyle{ (6_23_22_0) }[/math] | ||
172 | P64 | P 64 | [math]\displaystyle{ \Gamma_hC_6^5 }[/math] | 77a | [math]\displaystyle{ (c:(a/a)):6_4 }[/math] | [math]\displaystyle{ (6_23_22_0) }[/math] | ||
173 | P63 | P 63 | [math]\displaystyle{ \Gamma_hC_6^6 }[/math] | 78a | [math]\displaystyle{ (c:(a/a)):6_3 }[/math] | [math]\displaystyle{ (6_33_02_1) }[/math] | ||
174 | 6 | [math]\displaystyle{ 3* }[/math] | P6 | P 6 | [math]\displaystyle{ \Gamma_hC_{3h}^1 }[/math] | 43s | [math]\displaystyle{ (c:(a/a)):3:m }[/math] | [math]\displaystyle{ [3_03_03_0] }[/math] |
175 | 6/m | [math]\displaystyle{ 6* }[/math] | P6/m | P 6/m | [math]\displaystyle{ \Gamma_hC_{6h}^1 }[/math] | 53s | [math]\displaystyle{ (c:(a/a))\cdot m :6 }[/math] | [math]\displaystyle{ [6_03_02_0] }[/math] |
176 | P63/m | P 63/m | [math]\displaystyle{ \Gamma_hC_{6h}^2 }[/math] | 81a | [math]\displaystyle{ (c:(a/a))\cdot m :6_3 }[/math] | [math]\displaystyle{ [6_33_02_1] }[/math] | ||
177 | 622 | [math]\displaystyle{ 226 }[/math] | P622 | P 6 2 2 | [math]\displaystyle{ \Gamma_hD_6^1 }[/math] | 54s | [math]\displaystyle{ (c:(a/a))\cdot 2 :6 }[/math] | [math]\displaystyle{ (*6_03_02_0) }[/math] |
178 | P6122 | P 61 2 2 | [math]\displaystyle{ \Gamma_hD_6^2 }[/math] | 82a | [math]\displaystyle{ (c:(a/a))\cdot 2 :6_1 }[/math] | [math]\displaystyle{ (*6_13_12_1) }[/math] | ||
179 | P6522 | P 65 2 2 | [math]\displaystyle{ \Gamma_hD_6^3 }[/math] | 83a | [math]\displaystyle{ (c:(a/a))\cdot 2 :6_5 }[/math] | [math]\displaystyle{ (*6_13_12_1) }[/math] | ||
180 | P6222 | P 62 2 2 | [math]\displaystyle{ \Gamma_hD_6^4 }[/math] | 84a | [math]\displaystyle{ (c:(a/a))\cdot 2 :6_2 }[/math] | [math]\displaystyle{ (*6_23_22_0) }[/math] | ||
181 | P6422 | P 64 2 2 | [math]\displaystyle{ \Gamma_hD_6^5 }[/math] | 85a | [math]\displaystyle{ (c:(a/a))\cdot 2 :6_4 }[/math] | [math]\displaystyle{ (*6_23_22_0) }[/math] | ||
182 | P6322 | P 63 2 2 | [math]\displaystyle{ \Gamma_hD_6^6 }[/math] | 86a | [math]\displaystyle{ (c:(a/a))\cdot 2 :6_3 }[/math] | [math]\displaystyle{ (*6_33_02_1) }[/math] | ||
183 | 6mm | [math]\displaystyle{ *66 }[/math] | P6mm | P 6 m m | [math]\displaystyle{ \Gamma_hC_{6v}^1 }[/math] | 50s | [math]\displaystyle{ (c:(a/a)):m\cdot 6 }[/math] | [math]\displaystyle{ (*{\cdot}6{\cdot}3{\cdot}2) }[/math] |
184 | P6cc | P 6 c c | [math]\displaystyle{ \Gamma_hC_{6v}^2 }[/math] | 44h | [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 6 }[/math] | [math]\displaystyle{ (*{:}6{:}3{:}2) }[/math] | ||
185 | P63cm | P 63 c m | [math]\displaystyle{ \Gamma_hC_{6v}^3 }[/math] | 80a | [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 6_3 }[/math] | [math]\displaystyle{ (*{\cdot}6{:}3{:}2) }[/math] | ||
186 | P63mc | P 63 m c | [math]\displaystyle{ \Gamma_hC_{6v}^4 }[/math] | 79a | [math]\displaystyle{ (c:(a/a)):m\cdot 6_3 }[/math] | [math]\displaystyle{ (*{:}6{\cdot}3{\cdot}2) }[/math] | ||
187 | 6m2 | [math]\displaystyle{ *223 }[/math] | P6m2 | P 6 m 2 | [math]\displaystyle{ \Gamma_hD_{3h}^1 }[/math] | 48s | [math]\displaystyle{ (c:(a/a)):m\cdot 3:m }[/math] | [math]\displaystyle{ [*{\cdot}3{\cdot}3{\cdot}3] }[/math] |
188 | P6c2 | P 6 c 2 | [math]\displaystyle{ \Gamma_hD_{3h}^2 }[/math] | 43h | [math]\displaystyle{ (c:(a/a)):\tilde c \cdot 3:m }[/math] | [math]\displaystyle{ [*{:}3{:}3{:}3] }[/math] | ||
189 | P62m | P 6 2 m | [math]\displaystyle{ \Gamma_hD_{3h}^3 }[/math] | 47s | [math]\displaystyle{ (c:(a/a))\cdot m:3\cdot m }[/math] | [math]\displaystyle{ [3_0{*}{\cdot}3] }[/math] | ||
190 | P62c | P 6 2 c | [math]\displaystyle{ \Gamma_hD_{3h}^4 }[/math] | 42h | [math]\displaystyle{ (c:(a/a))\cdot m:3\cdot \tilde c }[/math] | [math]\displaystyle{ [3_0{*}{:}3] }[/math] | ||
191 | 6/m 2/m 2/m | [math]\displaystyle{ *226 }[/math] | P6/mmm | P 6/m 2/m 2/m | [math]\displaystyle{ \Gamma_hD_{6h}^1 }[/math] | 58s | [math]\displaystyle{ (c:(a/a))\cdot m:6\cdot m }[/math] | [math]\displaystyle{ [*{\cdot}6{\cdot}3{\cdot}2] }[/math] |
192 | P6/mcc | P 6/m 2/c 2/c | [math]\displaystyle{ \Gamma_hD_{6h}^2 }[/math] | 48h | [math]\displaystyle{ (c:(a/a))\cdot m:6\cdot\tilde c }[/math] | [math]\displaystyle{ [*{:}6{:}3{:}2] }[/math] | ||
193 | P63/mcm | P 63/m 2/c 2/m | [math]\displaystyle{ \Gamma_hD_{6h}^3 }[/math] | 87a | [math]\displaystyle{ (c:(a/a))\cdot m:6_3\cdot\tilde c }[/math] | [math]\displaystyle{ [*{\cdot}6{:}3{:}2] }[/math] | ||
194 | P63/mmc | P 63/m 2/m 2/c | [math]\displaystyle{ \Gamma_hD_{6h}^4 }[/math] | 88a | [math]\displaystyle{ (c:(a/a))\cdot m:6_3\cdot m }[/math] | [math]\displaystyle{ [*{:}6{\cdot}3{\cdot}2] }[/math] |
List of cubic
Simple (P) | Body centered (I) | Face centered (F) |
---|---|---|
(221) Caesium chloride. Different colors for the two atom types.
(216) Sphalerite
(223) Weaire–Phelan structure
Number | Point group | Orbifold | Short name | Full name | Schoenflies | Fedorov | Shubnikov | Conway | Fibrifold (preserving [math]\displaystyle{ z }[/math]) | Fibrifold (preserving [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math], [math]\displaystyle{ z }[/math]) |
---|---|---|---|---|---|---|---|---|---|---|
195 | 23 | [math]\displaystyle{ 332 }[/math] | P23 | P 2 3 | [math]\displaystyle{ \Gamma_cT^1 }[/math] | 59s | [math]\displaystyle{ \left ( a:a:a\right ) :2/3 }[/math] | [math]\displaystyle{ 2^\circ }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}3 }[/math] |
196 | F23 | F 2 3 | [math]\displaystyle{ \Gamma_c^fT^2 }[/math] | 61s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :2/3 }[/math] | [math]\displaystyle{ 1^\circ }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}3 }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}3 }[/math] | ||
197 | I23 | I 2 3 | [math]\displaystyle{ \Gamma_c^vT^3 }[/math] | 60s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2/3 }[/math] | [math]\displaystyle{ 4^{\circ\circ} }[/math] | [math]\displaystyle{ (2_1{*}2_02_0){:}3 }[/math] | [math]\displaystyle{ (2_1{*}2_02_0){:}3 }[/math] | ||
198 | P213 | P 21 3 | [math]\displaystyle{ \Gamma_cT^4 }[/math] | 89a | [math]\displaystyle{ \left ( a:a:a\right ) :2_1/3 }[/math] | [math]\displaystyle{ 1^\circ/4 }[/math] | [math]\displaystyle{ (2_12_1\bar{\times}){:}3 }[/math] | [math]\displaystyle{ (2_12_1\bar{\times}){:}3 }[/math] | ||
199 | I213 | I 21 3 | [math]\displaystyle{ \Gamma_c^vT^5 }[/math] | 90a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :2_1/3 }[/math] | [math]\displaystyle{ 2^\circ/4 }[/math] | [math]\displaystyle{ (2_0{*}2_12_1){:}3 }[/math] | [math]\displaystyle{ (2_0{*}2_12_1){:}3 }[/math] | ||
200 | 2/m 3 | [math]\displaystyle{ 3{*}2 }[/math] | Pm3 | P 2/m 3 | [math]\displaystyle{ \Gamma_cT_h^1 }[/math] | 62s | [math]\displaystyle{ \left ( a:a:a\right ) \cdot m/ \tilde 6 }[/math] | [math]\displaystyle{ 4^- }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}3 }[/math] |
201 | Pn3 | P 2/n 3 | [math]\displaystyle{ \Gamma_cT_h^2 }[/math] | 49h | [math]\displaystyle{ \left ( a:a:a\right ) \cdot \widetilde{ab} / \tilde 6 }[/math] | [math]\displaystyle{ 4^{\circ+} }[/math] | [math]\displaystyle{ (2\bar{*}_12_02_0){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}_12_02_0){:}3 }[/math] | ||
202 | Fm3 | F 2/m 3 | [math]\displaystyle{ \Gamma_c^fT_h^3 }[/math] | 64s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot m/ \tilde 6 }[/math] | [math]\displaystyle{ 2^- }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}3 }[/math] | ||
203 | Fd3 | F 2/d 3 | [math]\displaystyle{ \Gamma_c^fT_h^4 }[/math] | 50h | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) \cdot \tfrac{1}{2}\widetilde{ab} / \tilde 6 }[/math] | [math]\displaystyle{ 2^{\circ+} }[/math] | [math]\displaystyle{ (2\bar{*}2_02_1){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}2_02_1){:}3 }[/math] | ||
204 | Im3 | I 2/m 3 | [math]\displaystyle{ \Gamma_c^vT_h^5 }[/math] | 63s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot m/\tilde 6 }[/math] | [math]\displaystyle{ 8^{-\circ} }[/math] | [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}3 }[/math] | [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}3 }[/math] | ||
205 | Pa3 | P 21/a 3 | [math]\displaystyle{ \Gamma_cT_h^6 }[/math] | 91a | [math]\displaystyle{ \left ( a:a:a\right ) \cdot \tilde a /\tilde 6 }[/math] | [math]\displaystyle{ 2^-/4 }[/math] | [math]\displaystyle{ (2_12\bar{*}{:}){:}3) }[/math] | [math]\displaystyle{ (2_12\bar{*}{:}){:}3) }[/math] | ||
206 | Ia3 | I 21/a 3 | [math]\displaystyle{ \Gamma_c^vT_h^7 }[/math] | 92a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) \cdot \tilde a /\tilde 6 }[/math] | [math]\displaystyle{ 4^-/4 }[/math] | [math]\displaystyle{ (*2_12{:}2{:}2){:}3 }[/math] | [math]\displaystyle{ (*2_12{:}2{:}2){:}3 }[/math] | ||
207 | 432 | [math]\displaystyle{ 432 }[/math] | P432 | P 4 3 2 | [math]\displaystyle{ \Gamma_cO^1 }[/math] | 68s | [math]\displaystyle{ \left ( a:a:a\right ) :4/3 }[/math] | [math]\displaystyle{ 4^{\circ-} }[/math] | [math]\displaystyle{ (*4_04_02_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math] |
208 | P4232 | P 42 3 2 | [math]\displaystyle{ \Gamma_cO^2 }[/math] | 98a | [math]\displaystyle{ \left ( a:a:a\right ) :4_2//3 }[/math] | [math]\displaystyle{ 4^+ }[/math] | [math]\displaystyle{ (*4_24_22_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math] | ||
209 | F432 | F 4 3 2 | [math]\displaystyle{ \Gamma_c^fO^3 }[/math] | 70s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/3 }[/math] | [math]\displaystyle{ 2^{\circ-} }[/math] | [math]\displaystyle{ (*4_24_02_1){:}3 }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math] | ||
210 | F4132 | F 41 3 2 | [math]\displaystyle{ \Gamma_c^fO^4 }[/math] | 97a | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//3 }[/math] | [math]\displaystyle{ 2^+ }[/math] | [math]\displaystyle{ (*4_34_12_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math] | ||
211 | I432 | I 4 3 2 | [math]\displaystyle{ \Gamma_c^vO^5 }[/math] | 69s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/3 }[/math] | [math]\displaystyle{ 8^{+\circ} }[/math] | [math]\displaystyle{ (4_24_02_1){:3} }[/math] | [math]\displaystyle{ (2_1{*}2_02_0){:}6 }[/math] | ||
212 | P4332 | P 43 3 2 | [math]\displaystyle{ \Gamma_cO^6 }[/math] | 94a | [math]\displaystyle{ \left ( a:a:a\right ) :4_3//3 }[/math] | [math]\displaystyle{ 2^+/4 }[/math] | [math]\displaystyle{ (4_1{*}2_1){:}3 }[/math] | [math]\displaystyle{ (2_12_1\bar{\times}){:}6 }[/math] | ||
213 | P4132 | P 41 3 2 | [math]\displaystyle{ \Gamma_cO^7 }[/math] | 95a | [math]\displaystyle{ \left ( a:a:a\right ) :4_1//3 }[/math] | [math]\displaystyle{ 2^+/4 }[/math] | [math]\displaystyle{ (4_1{*}2_1){:}3 }[/math] | [math]\displaystyle{ (2_12_1\bar{\times}){:}6 }[/math] | ||
214 | I4132 | I 41 3 2 | [math]\displaystyle{ \Gamma_c^vO^8 }[/math] | 96a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/:a:a:a\right ) :4_1//3 }[/math] | [math]\displaystyle{ 4^+/4 }[/math] | [math]\displaystyle{ (*4_34_12_0){:}3 }[/math] | [math]\displaystyle{ (2_0{*}2_12_1){:}6 }[/math] | ||
215 | 43m | [math]\displaystyle{ *332 }[/math] | P43m | P 4 3 m | [math]\displaystyle{ \Gamma_cT_d^1 }[/math] | 65s | [math]\displaystyle{ \left ( a:a:a\right ) :\tilde 4 /3 }[/math] | [math]\displaystyle{ 2^\circ{:}2 }[/math] | [math]\displaystyle{ (*4{\cdot}42_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math] |
216 | F43m | F 4 3 m | [math]\displaystyle{ \Gamma_c^fT_d^2 }[/math] | 67s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 /3 }[/math] | [math]\displaystyle{ 1^\circ{:}2 }[/math] | [math]\displaystyle{ (*4{\cdot}42_1){:}3 }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math] | ||
217 | I43m | I 4 3 m | [math]\displaystyle{ \Gamma_c^vT_d^3 }[/math] | 66s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 /3 }[/math] | [math]\displaystyle{ 4^\circ{:}2 }[/math] | [math]\displaystyle{ (*{\cdot}44{:}2){:}3 }[/math] | [math]\displaystyle{ (2_1{*}2_02_0){:}6 }[/math] | ||
218 | P43n | P 4 3 n | [math]\displaystyle{ \Gamma_cT_d^4 }[/math] | 51h | [math]\displaystyle{ \left ( a:a:a\right ) :\tilde 4 //3 }[/math] | [math]\displaystyle{ 4^\circ }[/math] | [math]\displaystyle{ (*4{:}42_0){:}3 }[/math] | [math]\displaystyle{ (*2_02_02_02_0){:}6 }[/math] | ||
219 | F43c | F 4 3 c | [math]\displaystyle{ \Gamma_c^fT_d^5 }[/math] | 52h | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :\tilde 4 //3 }[/math] | [math]\displaystyle{ 2^{\circ\circ} }[/math] | [math]\displaystyle{ (*4{:}42_1){:}3 }[/math] | [math]\displaystyle{ (*2_02_12_02_1){:}6 }[/math] | ||
220 | I43d | I 4 3 d | [math]\displaystyle{ \Gamma_c^vT_d^6 }[/math] | 93a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :\tilde 4 //3 }[/math] | [math]\displaystyle{ 4^\circ/4 }[/math] | [math]\displaystyle{ (4\bar{*}2_1){:}3 }[/math] | [math]\displaystyle{ (2_0{*}2_12_1){:}6 }[/math] | ||
221 | 4/m 3 2/m | [math]\displaystyle{ *432 }[/math] | Pm3m | P 4/m 3 2/m | [math]\displaystyle{ \Gamma_cO_h^1 }[/math] | 71s | [math]\displaystyle{ \left ( a:a:a\right ) :4/\tilde 6 \cdot m }[/math] | [math]\displaystyle{ 4^-{:}2 }[/math] | [math]\displaystyle{ [*{\cdot}4{\cdot}4{\cdot}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6 }[/math] |
222 | Pn3n | P 4/n 3 2/n | [math]\displaystyle{ \Gamma_cO_h^2 }[/math] | 53h | [math]\displaystyle{ \left ( a:a:a\right ) :4/\tilde 6 \cdot \widetilde{abc} }[/math] | [math]\displaystyle{ 8^{\circ\circ} }[/math] | [math]\displaystyle{ (*4_04{:}2){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}_12_02_0){:}6 }[/math] | ||
223 | Pm3n | P 42/m 3 2/n | [math]\displaystyle{ \Gamma_cO_h^3 }[/math] | 102a | [math]\displaystyle{ \left ( a:a:a\right ) :4_2//\tilde 6 \cdot \widetilde{abc} }[/math] | [math]\displaystyle{ 8^\circ }[/math] | [math]\displaystyle{ [*{\cdot}4{:}4{\cdot}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{\cdot}2{\cdot}2]{:}6 }[/math] | ||
224 | Pn3m | P 42/n 3 2/m | [math]\displaystyle{ \Gamma_cO_h^4 }[/math] | 103a | [math]\displaystyle{ \left ( a:a:a\right ) :4_2//\tilde 6 \cdot m }[/math] | [math]\displaystyle{ 4^+{:}2 }[/math] | [math]\displaystyle{ (*4_24{\cdot}2){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}_12_02_0){:}6 }[/math] | ||
225 | Fm3m | F 4/m 3 2/m | [math]\displaystyle{ \Gamma_c^fO_h^5 }[/math] | 73s | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot m }[/math] | [math]\displaystyle{ 2^-{:}2 }[/math] | [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}6 }[/math] | ||
226 | Fm3c | F 4/m 3 2/c | [math]\displaystyle{ \Gamma_c^fO_h^6 }[/math] | 54h | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4/\tilde 6 \cdot \tilde c }[/math] | [math]\displaystyle{ 4^{--} }[/math] | [math]\displaystyle{ [*{\cdot}4{:}4{:}2]{:}3 }[/math] | [math]\displaystyle{ [*{\cdot}2{\cdot}2{:}2{:}2]{:}6 }[/math] | ||
227 | Fd3m | F 41/d 3 2/m | [math]\displaystyle{ \Gamma_c^fO_h^7 }[/math] | 100a | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot m }[/math] | [math]\displaystyle{ 2^+{:}2 }[/math] | [math]\displaystyle{ (*4_14{\cdot}2){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}2_02_1){:}6 }[/math] | ||
228 | Fd3c | F 41/d 3 2/c | [math]\displaystyle{ \Gamma_c^fO_h^8 }[/math] | 101a | [math]\displaystyle{ \left ( \tfrac{a+c}{2}/\tfrac{b+c}{2}/\tfrac{a+b}{2}:a:a:a\right ) :4_1//\tilde 6 \cdot \tilde c }[/math] | [math]\displaystyle{ 4^{++} }[/math] | [math]\displaystyle{ (*4_14{:}2){:}3 }[/math] | [math]\displaystyle{ (2\bar{*}2_02_1){:}6 }[/math] | ||
229 | Im3m | I 4/m 3 2/m | [math]\displaystyle{ \Gamma_c^vO_h^9 }[/math] | 72s | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4/\tilde 6 \cdot m }[/math] | [math]\displaystyle{ 8^\circ{:}2 }[/math] | [math]\displaystyle{ [*{\cdot}4{\cdot}4{:}2]{:}3 }[/math] | [math]\displaystyle{ [2_1{*}{\cdot}2{\cdot}2]{:}6 }[/math] | ||
230 | Ia3d | I 41/a 3 2/d | [math]\displaystyle{ \Gamma_c^vO_h^{10} }[/math] | 99a | [math]\displaystyle{ \left ( \tfrac{a+b+c}{2}/a:a:a\right ) :4_1//\tilde 6 \cdot \tfrac{1}{2}\widetilde{abc} }[/math] | [math]\displaystyle{ 8^\circ/4 }[/math] | [math]\displaystyle{ (*4_14{:}2){:}3 }[/math] | [math]\displaystyle{ (*2_12{:}2{:}2){:}6 }[/math] |
Notes
- ↑ The symbol [math]\displaystyle{ e }[/math] was introduced by the IUCR in 1992. Prior to this, the space groups Aem2 (No. 39), Aea2 (No. 41), Cmce (No. 64), Cmme (No. 67), and Ccce (No. 68) were known as Abm2 (No. 39), Aba2 (No. 41), Cmca (No. 64), Cmma (No. 67), and Ccca (No. 68) respectively. Historical literature may refer to the old names, but their meaning is unchanged.[1]
References
- ↑ de Wolff, P. M.; Billiet, Y.; Donnay, J. D. H.; Fischer, W.; Galiulin, R. B.; Glazer, A. M.; Hahn, T.; Senechal, M. et al. (1992-09-01). "Symbols for symmetry elements and symmetry operations. Final report of the IUCr Ad-Hoc Committee on the Nomenclature of Symmetry". Acta Crystallographica Section A Foundations of Crystallography (International Union of Crystallography (IUCr)) 48 (5): 727–732. doi:10.1107/s0108767392003428. ISSN 0108-7673.
- ↑ Bradley, C. J.; Cracknell, A. P. (2010). The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford New York: Clarendon Press. pp. 127–134. ISBN 978-0-19-958258-7. OCLC 859155300.
External links
- International Union of Crystallography
- Point Groups and Bravais Lattices
- Full list of 230 crystallographic space groups
- Conway et al. on fibrifold notation
Original source: https://en.wikipedia.org/wiki/List of space groups.
Read more |