List of uniform polyhedra by spherical triangle
There are many relations among the uniform polyhedra. This List of uniform polyhedra by spherical triangle groups them by the Wythoff symbol.
Key
Image |
The vertex figure can be discovered by considering the Wythoff symbol:
- p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r)p.
- p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
- 2|q r - 4 edges, alternating q-gons and r-gons
- q r|p - 4 edges, 2p-gons, q-gons, 2p-gons r-gons, Vertex figure 2p.q.2p.r.
- q 2|p - 3 edges, 2p-gons, q-gons, 2p-gons, Vertex figure 2p.q.2p.
- p q r|- 3 edges, 2p-gons, 2q-gons, 2r-gons, vertex figure 2p.2q.2r
Convex
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 3}\ {\pi\over 3}\ {\pi\over 2} }[/math] | Template:Polyhedra smallbox2 | Octahedron | Template:Polyhedra smallbox2 | Cuboctahedron | Truncated octahedron | Icosahedron | ||
[math]\displaystyle{ {\pi\over 4}\ {\pi\over 3}\ {\pi\over 2} }[/math] | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 |
[math]\displaystyle{ {\pi\over 5}\ {\pi\over 3}\ {\pi\over 2} }[/math] | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 |
Non-convex
a b 2
3 3 2
[math]\displaystyle{ {a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 2} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 3}\ {\pi\over 2}\ {2\pi\over 3} }[/math] |
4 3 2
[math]\displaystyle{ {a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 2} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2} }[/math] | octahedron | cube | ||||||
[math]\displaystyle{ {3\pi\over 4}\ {\pi\over 3}\ {\pi\over 2} }[/math] | ||||||||
[math]\displaystyle{ {3\pi\over 4}\ {2\pi\over 3}\ {\pi\over 2} }[/math] |
5 3 2
[math]\displaystyle{ {a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 2} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | |
---|---|---|---|---|---|---|---|
[math]\displaystyle{ {2\pi\over 5}\ {\pi\over 3}\ {\pi\over 2} }[/math] | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | |||||
p q r| | p q r| | p q r| | |p q r | ||||
[math]\displaystyle{ {3\pi\over 5}\ {\pi\over 3}\ {\pi\over 2} }[/math] |
5 5 2
[math]\displaystyle{ {a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 2} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r |
---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 5}\ {2\pi\over 5}\ {\pi\over 2} }[/math] | Template:Polyhedra smallbox2 | Template:Polyhedra smallbox2 | ||||
p q r| | p q r| | |p q r | ||||
[math]\displaystyle{ {\pi\over 5}\ {3\pi\over 5}\ {\pi\over 2} }[/math] |
a b 3
3 3 3
[math]\displaystyle{ {a\pi\over 3}\ {b\pi\over 3}\ {c\pi\over 3} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 3}\ {\pi\over 3}\ {2\pi\over 3} }[/math] |
4 3 3
[math]\displaystyle{ {a\pi\over 4}\ {b\pi\over 3}\ {c\pi\over 3} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|
5 3 3
[math]\displaystyle{ {a\pi\over 5}\ {b\pi\over 3}\ {c\pi\over 3} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | |
---|---|---|---|---|---|---|---|
[math]\displaystyle{ {3\pi\over 5}\ {\pi\over 3}\ {\pi\over 3} }[/math] | |||||||
p q r| | p q r| | |p q r | |||||
[math]\displaystyle{ {\pi\over 5}\ {2\pi\over 3}\ {\pi\over 3} }[/math] |
4 4 3
[math]\displaystyle{ {a\pi\over 4}\ {b\pi\over 4}\ {c\pi\over 3} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 4}\ {\pi\over 3}\ {3\pi\over 4} }[/math] | ||||||||
[math]\displaystyle{ {\pi\over 4}\ {\pi\over 4}\ {2\pi\over 3} }[/math] |
5 5 3
[math]\displaystyle{ {a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 3} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {\pi\over 3}\ {2\pi\over 5}\ {3\pi\over 5} }[/math] | ||||||||
[math]\displaystyle{ {\pi\over 3}\ {\pi\over 5}\ {4\pi\over 5} }[/math] | ||||||||
[math]\displaystyle{ {\pi\over 5}\ {\pi\over 5}\ {2\pi\over 3} }[/math] | ||||||||
[math]\displaystyle{ {\pi\over 5}\ {\pi\over 3}\ {3\pi\over 5} }[/math] |
a b 5
5 5 5
[math]\displaystyle{ {a\pi\over 5}\ {b\pi\over 5}\ {c\pi\over 5} }[/math] Group
Spherical triangle [math]\displaystyle{ {\pi\over p}\ {\pi\over q}\ {\pi\over r} }[/math] |
p|q r | q|p r | r|p q | q r|p | p r|q | p q|r | p q r| | |p q r |
---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ {2\pi\over 5}\ {3\pi\over 5}\ {3\pi\over 5} }[/math] |
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/List of uniform polyhedra by spherical triangle.
Read more |