Lommel function

From HandWiki

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

z2d2ydz2+zdydz+(z2ν2)y=zμ+1.

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

sμ,ν(z)=π2[Yν(z)0zxμJν(x)dxJν(z)0zxμYν(x)dx],
Sμ,ν(z)=sμ,ν(z)+2μ1Γ(μ+ν+12)Γ(μν+12)(sin[(μν)π2]Jν(z)cos[(μν)π2]Yν(z)),

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

See also

References