Mahler polynomial

From HandWiki

}}

In mathematics, the Mahler polynomials gn(x) are polynomials introduced by Mahler[1] in his work on the zeros of the incomplete gamma function.

Mahler polynomials are given by the generating function

gn(x)tn/n!=exp(x(1+tet))

Which is close to the generating function of the Touchard polynomials.

The first few examples are (sequence A008299 in the OEIS)

g0=1;
g1=0;
g2=x;
g3=x;
g4=x+3x2;
g5=x+10x2;
g6=x+25x215x3;
g7=x+56x2105x3;
g8=x+119x2490x3+105x4;

References

  1. Mahler, Kurt (December 1930). "Ueber die nullstellen der unvollstaendigen Gammafunktionen" (in it). Rendiconti del Circolo Matematico di Palermo 54 (1): 1–41. doi:10.1007/BF03021175. ISSN 0009-725X. http://link.springer.com/10.1007/BF03021175.