Mean integrated squared error
From HandWiki
In statistics, the mean integrated squared error (MISE) is used in density estimation. The MISE of an estimate of an unknown probability density is given by[1]
- [math]\displaystyle{ \operatorname{E}\|f_n-f\|_2^2=\operatorname{E}\int (f_n(x)-f(x))^2 \, dx }[/math]
where ƒ is the unknown density, ƒn is its estimate based on a sample of n independent and identically distributed random variables. Here, E denotes the expected value with respect to that sample.
The MISE is also known as L2 risk function.
See also
References
- ↑ Wand, M. P.; Jones, M. C. (1994). Kernel smoothing. CRC press. pp. 15.
Original source: https://en.wikipedia.org/wiki/Mean integrated squared error.
Read more |