Operator monotone function
In linear algebra, the operator monotone function is an important type of real-valued function, fully classified by Charles Löwner in 1934.[1] It is closely allied to the operator concave and operator concave functions, and is encountered in operator theory and in matrix theory, and led to the Löwner–Heinz inequality.[2][3]
Definition
A function [math]\displaystyle{ f : I \to \Reals }[/math] defined on an interval [math]\displaystyle{ I \subseteq \Reals }[/math] is said to be operator monotone if whenever [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] are Hermitian matrices (of any size/dimensions) whose eigenvalues all belong to the domain of [math]\displaystyle{ f }[/math] and whose difference [math]\displaystyle{ A - B }[/math] is a positive semi-definite matrix, then necessarily [math]\displaystyle{ f(A) - f(B) \geq 0 }[/math] where [math]\displaystyle{ f(A) }[/math] and [math]\displaystyle{ f(B) }[/math] are the values of the matrix function induced by [math]\displaystyle{ f }[/math] (which are matrices of the same size as [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math]).
Notation
This definition is frequently expressed with the notation that is now defined. Write [math]\displaystyle{ A \geq 0 }[/math] to indicate that a matrix [math]\displaystyle{ A }[/math] is positive semi-definite and write [math]\displaystyle{ A \geq B }[/math] to indicate that the difference [math]\displaystyle{ A - B }[/math] of two matrices [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] satisfies [math]\displaystyle{ A - B \geq 0 }[/math] (that is, [math]\displaystyle{ A - B }[/math] is positive semi-definite).
With [math]\displaystyle{ f : I \to \Reals }[/math] and [math]\displaystyle{ A }[/math] as in the theorem's statement, the value of the matrix function [math]\displaystyle{ f(A) }[/math] is the matrix (of the same size as [math]\displaystyle{ A }[/math]) defined in terms of its [math]\displaystyle{ A }[/math]'s spectral decomposition [math]\displaystyle{ A = \sum_j \lambda_j P_j }[/math] by [math]\displaystyle{ f(A) = \sum_j f(\lambda_j)P_j ~, }[/math] where the [math]\displaystyle{ \lambda_j }[/math] are the eigenvalues of [math]\displaystyle{ A }[/math] with corresponding projectors [math]\displaystyle{ P_j. }[/math]
The definition of an operator monotone function may now be restated as:
A function [math]\displaystyle{ f : I \to \Reals }[/math] defined on an interval [math]\displaystyle{ I \subseteq \Reals }[/math] said to be operator monotone if (and only if) for all positive integers [math]\displaystyle{ n, }[/math] and all [math]\displaystyle{ n \times n }[/math] Hermitian matrices [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] with eigenvalues in [math]\displaystyle{ I, }[/math] if [math]\displaystyle{ A \geq B }[/math] then [math]\displaystyle{ f(A) \geq f(B). }[/math]
See also
- Matrix function – Function that maps matrices to matrices
- Trace inequality
References
- ↑ Löwner, K.T. (1934). "Über monotone Matrixfunktionen". Mathematische Zeitschrift 38: 177–216. doi:10.1007/BF01170633. http://eudml.org/doc/168495.
- ↑ "Löwner–Heinz inequality". https://www.encyclopediaofmath.org/index.php/Löwner–Heinz_inequality.
- ↑ Chansangiam, Pattrawut (2013). "Operator Monotone Functions: Characterizations and Integral Representations". arXiv:1305.2471 [math.FA].
Further reading
- Schilling, R.; Song, R.; Vondraček, Z. (2010). Bernstein functions. Theory and Applications. Studies in Mathematics. 37. de Gruyter, Berlin. doi:10.1515/9783110215311. ISBN 9783110215311.
- Hansen, Frank (2013). "The fast track to Löwner's theorem". Linear Algebra and Its Applications 438 (11): 4557–4571. doi:10.1016/j.laa.2013.01.022.
- Chansangiam, Pattrawut (2015). "A Survey on Operator Monotonicity, Operator Convexity, and Operator Means". International Journal of Analysis 2015: 1–8. doi:10.1155/2015/649839.
Original source: https://en.wikipedia.org/wiki/Operator monotone function.
Read more |