Optimized effective potential method

From HandWiki
Short description: Quantum-mechanical framework for simulating molecules and solids

The optimized effective potential method (OEP)[1][2] in Kohn-Sham (KS) density functional theory (DFT)[3][4] is a method to determine the potentials as functional derivatives of the corresponding KS orbital-dependent energy density functionals. This can be in principle done for any arbitrary orbital-dependent functional,[5] but is most common for exchange energy as the so-called exact exchange method (EXX),[6][7] which will be considered here.

Origin

The OEP method was developed more than 10 years prior to the work of Pierre Hohenberg,[3] Walter Kohn and Lu Jeu Sham[4] in 1953 by R. T. Sharp and G. K. Horton [8] in order to investigate, what happens to Hartree-Fock (HF) theory[9][10][11][12][13] when, instead of the regular nonlocal exchange potential, a local exchange potential is demanded. Much later after 1990 it was found out that this ansatz is useful in density functional theory.

Background via chain rule

vxc(r)δExc[ρ]δρ(r)=δExc[{ϕs}]δρ(r)

 

 

 

 

(1)

where the index s denotes either occupied or unoccupied KS orbitals and eigenvalues. The problem is that, although the xc energy is in principle (due to the Hohenberg-Kohn (HK) theorem[3]) a functional of the density, its explicit dependence on the density is unknown (only known in the simple Local density approximation (LDA)[3] case), only its implicit dependence through the KS orbitals. That motivates the use of the chain rule

vxc(r)=drs[δExc[{ϕs}]δϕs(r)δϕs(r)δρ(r)+c.c.]

Unfortunately the functional derivative δϕs/δρ, despite its existence, is also unknown. So one needs to invoke the chain rule once more, now with respect to the Kohn-Sham (KS) potential vS(r)

vxc(r)=drdrs[δExc[{ϕs}]δϕs(r)δϕs(r)δvS(r)δvS(r)δρ(r)XS1(r,r)+c.c.]


Formalism

The KS orbital-dependent exact exchange energy (EXX) is given in Chemist's notation as

Ex[{ϕi}]=12ij(ij|ji)12ijdrdrϕi(r)ϕj(r)ϕj(r)ϕi(r)|rr|

where r,r denote electronic coordinates, the hermitian conjugate.The static Kohn-Sham (KS) response function is given as

XS(r,r)δρ(r)δvS(r)=ia[ϕi(r)ϕa(r)ϕa(r)ϕi(r)εiεa+c.c.]

 

 

 

 

(2)

where the indices i denote occupied and a unoccupied KS orbitals, c.c. the complex conjugate. the right hand side (r.h.s.) of the OEP equation is

t(r)=δEx[{ϕi}]δvS(r)=ia[ϕi(r)ϕa(r)ϕa|v^xNL|ϕiεiεa+c.c.]

 

 

 

 

(3)

where v^xNL is the nonlocal exchange operator from Hartree-Fock (HF) theory but evaluated with KS orbitals stemming from the functional derivative δExc[{ϕi}]/δϕi(r). Lastly note that the following functional derivative is given by first order static perturbation theory exactly

δϕs(r)δvS(r)=ϕi(r)t,tiϕt(r)ϕt(r)εiεtG(r,r)

which is a Green's function. Combining eqs. (1), (2) and (3) leads to the Optimized Effective Potential (OEP) Integral equation

drvx(r)XS(r,r)=t(r)

Implementation with a basis set

Usually the exchange potential is expanded in an auxiliary basis set (RI basis) {fμ} as vx(r)=νvx,νfν(r) together with the regular orbital basis {χλ} requiring the so-called 3-index integrals of the form (fν|χλχκ) as the linear algebra problem

XSvx=t

It shall be noted, that many OEP codes suffer from numerical issues.[14] There are two main causes. The first is, that the Hohenberg-Kohn theorem is violated since for practical reasons a finite basis set is used, the second being that different spatial regions of potentials have different influence on the optimized energy leading e.g. to oscillations in the convergence from poor conditioning.

References

  1. Kümmel, S.; Perdew, J. P. (2003). "Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential". Physical Review B 68 (3). doi:10.1103/PhysRevB.68.035103. Bibcode2003PhRvB..68c5103K. 
  2. Krieger, J. B.; Li, Y.; Iafrate, G. J. (1992). "Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory". Physical Review A 45 (1): 101–126. doi:10.1103/PhysRevA.45.101. PMID 9906704. Bibcode1992PhRvA..45..101K. 
  3. 3.0 3.1 3.2 3.3 Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review 136 (3B): B864. doi:10.1103/PhysRev.136.B864. Bibcode1964PhRv..136..864H. 
  4. 4.0 4.1 Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review 140 (4A). doi:10.1103/PhysRev.140.A1133. Bibcode1965PhRv..140.1133K. 
  5. Smiga, S.; Siecinska, S.; Fabiana, E. (2020). "Methods to generate reference total Pauli and kinetic potentials". Physical Review B 101. doi:10.1103/PhysRevB.101.165144. 
  6. Görling, A.; Levy, M. (1994). "Exact Kohn-Sham scheme based on perturbation theory". Physical Review A 50 (1): 196–204. doi:10.1103/PhysRevA.50.196. PMID 9910882. Bibcode1994PhRvA..50..196G. 
  7. Görling A. (1995). "Exact treatment of exchange in Kohn-Sham band-structure schemes". Physical Review B 53 (11): 7024–7029. doi:10.1103/PhysRevB.53.7024. PMID 9982147. 
  8. Sharp, R. T.; Horton, G. K. (1953). "A Variational Approach to the Unipotential Many-Electron Problem". Physical Review 90 (2): 317. doi:10.1103/PhysRev.90.317. Bibcode1953PhRv...90..317S. 
  9. Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field". Mathematical Proceedings of the Cambridge Philosophical Society 24 (1): 111. doi:10.1017/S0305004100011920. Bibcode1928PCPS...24..111H. 
  10. Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Physical Review 32 (3): 339–348. doi:10.1103/PhysRev.32.339. Bibcode1928PhRv...32..339S. 
  11. Gaunt, J. A. (1928). "A Theory of Hartree's Atomic Fields". Mathematical Proceedings of the Cambridge Philosophical Society 24 (2): 328–342. doi:10.1017/S0305004100015851. Bibcode1928PCPS...24..328G. 
  12. Slater, J. C. (1930). "Note on Hartree's Method". Physical Review 35 (2): 210–211. doi:10.1103/PhysRev.35.210.2. Bibcode1930PhRv...35..210S. 
  13. Fock, V. A. (1930). "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems" (in de). Zeitschrift für Physik 61 (1): 126–148. doi:10.1007/BF01340294. Bibcode1930ZPhy...61..126F.  Fock, V. A. (1930). ""Selfconsistent field" mit Austausch für Natrium" (in de). Zeitschrift für Physik 62 (11): 795–805. doi:10.1007/BF01330439. Bibcode1930ZPhy...62..795F. 
  14. Trushin, E. and Görling, A. (2021). "Numerically stable optimized effective potential method with standard Gaussian basis sets". The Journal of Chemical Physics 155: 054109. doi:10.1063/5.0056431.