Order-4 octahedral honeycomb

From HandWiki
Order-4 octahedral honeycomb
H3 344 CC center.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {3,4,4}
{3,41,1}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel branchu.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel branchu.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png
Cells {3,4} Uniform polyhedron-43-t2.png
Faces triangle {3}
Edge figure square {4}
Vertex figure square tiling, {4,4}
Square tiling uniform coloring 1.png 40px 40px Square tiling uniform coloring 9.png
Dual Square tiling honeycomb, {4,4,3}
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Regular

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A half symmetry construction, [3,4,4,1+], exists as {3,41,1}, with two alternating types (colors) of octahedral cells: CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png.

A second half symmetry is [3,4,1+,4]: CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png.

A higher index sub-symmetry, [3,4,4*], which is index 8, exists with a pyramidal fundamental domain, [((3,∞,3)),((3,∞,3))]: CDel branchu.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel branchu.png.

This honeycomb contains CDel node 1.pngCDel split1.pngCDel branchu.png and CDel node 1.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png that tile 2-hypercycle surfaces, which are similar to the paracompact infinite-order triangular tilings CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png and CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png, respectively:

H2chess 23ib.png

Related polytopes and honeycombs

The order-4 octahedral honeycomb is a regular hyperbolic honeycomb in 3-space, and is one of eleven regular paracompact honeycombs.

There are fifteen uniform honeycombs in the [3,4,4] Coxeter group family, including this regular form.

It is a part of a sequence of honeycombs with a square tiling vertex figure:

It a part of a sequence of regular polychora and honeycombs with octahedral cells:

Rectified order-4 octahedral honeycomb

Rectified order-4 octahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{3,4,4} or t1{3,4,4}
Coxeter diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel branchu 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 11.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png
Cells r{4,3} Uniform polyhedron-43-t1.png
{4,4}Uniform tiling 44-t0.svg
Faces triangle {3}
square {4}
Vertex figure Rectified order-4 octahedral honeycomb verf.png
square prism
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive, edge-transitive

The rectified order-4 octahedral honeycomb, t1{3,4,4}, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png has cuboctahedron and square tiling facets, with a square prism vertex figure.

H3 344 CC center 0100.png

Truncated order-4 octahedral honeycomb

Truncated order-4 octahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{3,4,4} or t0,1{3,4,4}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel branchu 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel branchu 11.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png
Cells t{3,4} Uniform polyhedron-43-t12.png
{4,4}Uniform tiling 44-t0.svg
Faces square {4}
hexagon {6}
Vertex figure Truncated order-4 octahedral honeycomb verf.png
square pyramid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The truncated order-4 octahedral honeycomb, t0,1{3,4,4}, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png has truncated octahedron and square tiling facets, with a square pyramid vertex figure.

H3 443-0011.png

Bitruncated order-4 octahedral honeycomb

The bitruncated order-4 octahedral honeycomb is the same as the bitruncated square tiling honeycomb.

Cantellated order-4 octahedral honeycomb

Cantellated order-4 octahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{3,4,4} or t0,2{3,4,4}
s2{3,4,4}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells rr{3,4} Uniform polyhedron-43-t02.png
{}x4 40px
r{4,4} Uniform tiling 44-t1.png
Faces triangle {3}
square {4}
Vertex figure Cantellated order-4 octahedral honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The cantellated order-4 octahedral honeycomb, t0,2{3,4,4}, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png has rhombicuboctahedron, cube, and square tiling facets, with a wedge vertex figure.

H3 443-0101.png

Cantitruncated order-4 octahedral honeycomb

Cantitruncated order-4 octahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols tr{3,4,4} or t0,1,2{3,4,4}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Cells tr{3,4} Uniform polyhedron-43-t012.png
{}x{4} 40px
t{4,4} Uniform tiling 44-t01.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Cantitruncated order-4 octahedral honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
[math]\displaystyle{ \overline{O}_3 }[/math], [3,41,1]
Properties Vertex-transitive

The cantitruncated order-4 octahedral honeycomb, t0,1,2{3,4,4}, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png has truncated cuboctahedron, cube, and truncated square tiling facets, with a mirrored sphenoid vertex figure.

H3 443-0111.png

Runcinated order-4 octahedral honeycomb

The runcinated order-4 octahedral honeycomb is the same as the runcinated square tiling honeycomb.

Runcitruncated order-4 octahedral honeycomb

Runcitruncated order-4 octahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{3,4,4}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node 1.png
Cells t{3,4} Uniform polyhedron-43-t12.png
{6}x{} 40px
rr{4,4} Uniform tiling 44-t02.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Runcitruncated order-4 octahedral honeycomb verf.png
square pyramid
Coxeter groups [math]\displaystyle{ \overline{R}_3 }[/math], [3,4,4]
Properties Vertex-transitive

The runcitruncated order-4 octahedral honeycomb, t0,1,3{3,4,4}, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png has truncated octahedron, hexagonal prism, and square tiling facets, with a square pyramid vertex figure.

H3 443-1011.png

Runcicantellated order-4 octahedral honeycomb

The runcicantellated order-4 octahedral honeycomb is the same as the runcitruncated square tiling honeycomb.

Omnitruncated order-4 octahedral honeycomb

The omnitruncated order-4 octahedral honeycomb is the same as the omnitruncated square tiling honeycomb.

Snub order-4 octahedral honeycomb

Snub order-4 octahedral honeycomb
Type Paracompact scaliform honeycomb
Schläfli symbols s{3,4,4}
Coxeter diagrams CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
CDel node h.pngCDel split1.pngCDel nodes hh.pngCDel 2a2b-cross.pngCDel nodes.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png
CDel branchu hh.pngCDel split2.pngCDel node h.pngCDel split1.pngCDel branchu hh.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 4sg.pngCDel node g.png
Cells square tiling
icosahedron
square pyramid
Faces triangle {3}
square {4}
Vertex figure
Coxeter groups [4,4,3+]
[41,1,3+]
[(4,4,(3,3)+)]
Properties Vertex-transitive

The snub order-4 octahedral honeycomb, s{3,4,4}, has Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png. It is a scaliform honeycomb, with square pyramid, square tiling, and icosahedron facets.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups
    • Norman W. Johnson and Asia Ivic Weiss Quadratic Integers and Coxeter Groups PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336