PDE-constrained optimization

From HandWiki

PDE-constrained optimization is a subset of mathematical optimization where at least one of the constraints may be expressed as a partial differential equation.[1] Typical domains where these problems arise include aerodynamics, computational fluid dynamics, image segmentation, and inverse problems.[2] A standard formulation of PDE-constrained optimization encountered in a number of disciplines is given by:[3][math]\displaystyle{ \min_{y,u} \; \frac 1 2 \|y-\widehat{y}\|_{L_2(\Omega)}^2 + \frac\beta2 \|u\|_{L_2(\Omega)}^2, \quad \text{s.t.} \; \mathcal{D}y = u }[/math]where [math]\displaystyle{ u }[/math] is the control variable and [math]\displaystyle{ \|\cdot\|_{L_{2}(\Omega)}^{2} }[/math] is the squared Euclidean norm and is not a norm itself. Closed-form solutions are generally unavailable for PDE-constrained optimization problems, necessitating the development of numerical methods.[4][5][6]

Applications

Optimal control of bacterial chemotaxis system

The following example comes from p. 20-21 of Pearson.[3] Chemotaxis is the movement of an organism in response to an external chemical stimulus. One problem of particular interest is in managing the spatial dynamics of bacteria that are subject to chemotaxis to achieve some desired result. For a cell density [math]\displaystyle{ z(t,{\bf x}) }[/math] and concentration density [math]\displaystyle{ c(t,{\bf x}) }[/math] of a chemoattractant, it is possible to formulate a boundary control problem:[math]\displaystyle{ \min_{z,c,u} \; {1\over{2}}\int_{\Omega}\left[z(T,{\bf x})-\widehat{z} \right]^{2} + {\gamma_{c}\over{2}} \int_{\Omega}\left[c(T,{\bf x})-\widehat{c} \right]^{2} + {\gamma_{u}\over{2}}\int_{0}^{T}\int_{\partial\Omega}u^{2} }[/math]where [math]\displaystyle{ \widehat{z} }[/math] is the ideal cell density, [math]\displaystyle{ \widehat{c} }[/math] is the ideal concentration density, and [math]\displaystyle{ u }[/math] is the control variable. This objective function is subject to the dynamics:[math]\displaystyle{ \begin{aligned} {\partial z\over{\partial t}} - D_{z}\Delta z - \alpha \nabla \cdot \left[ {\nabla c\over{(1+c)^{2}}}z \right] &= 0 \quad \text{in} \quad \Omega \\ {\partial c\over{\partial t}} - \Delta c + \rho c - w{z^{2}\over{1+z^{2}}} &= 0 \quad \text{in} \quad \Omega \\ {\partial z\over{\partial n}} &= 0 \quad \text{on} \quad \partial\Omega \\ {\partial c\over{\partial n}} + \zeta (c-u) &= 0 \quad \text{on} \quad \partial\Omega \end{aligned} }[/math]where [math]\displaystyle{ \Delta }[/math] is the Laplace operator.

See also

References

  1. Leugering, Günter; Benner, Peter; Engell, Sebastian et al., eds (2014). "Trends in PDE Constrained Optimization" (in en-gb). International Series of Numerical Mathematics (Springer) 165. doi:10.1007/978-3-319-05083-6. ISBN 978-3-319-05082-9. ISSN 0373-3149. 
  2. Lorenz T. Biegler, ed (2007-01-01). Real-Time PDE-Constrained Optimization. Computational Science & Engineering. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718935. ISBN 978-0-89871-621-4. 
  3. 3.0 3.1 Pearson, John (May 16, 2018). "PDE-Constrained Optimization in Physics, Chemistry & Biology: Modelling and Numerical Methods". https://www.maths.dundee.ac.uk/aathanassoulis/Pearson_May2018.pdf. 
  4. Biros, George; Ghattas, Omar (2005-01-01). "Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part I: The Krylov--Schur Solver". SIAM Journal on Scientific Computing 27 (2): 687–713. doi:10.1137/S106482750241565X. ISSN 1064-8275. Bibcode2005SJSC...27..687B. 
  5. Antil, Harbir; Heinkenschloss, Matthias; Hoppe, Ronald H. W.; Sorensen, Danny C. (2010-08-01). "Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables" (in en). Computing and Visualization in Science 13 (6): 249–264. doi:10.1007/s00791-010-0142-4. ISSN 1433-0369. https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-10652. 
  6. Schöberl, Joachim; Zulehner, Walter (2007-01-01). "Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems". SIAM Journal on Matrix Analysis and Applications 29 (3): 752–773. doi:10.1137/060660977. ISSN 0895-4798. 
  7. Jameson, Antony (2003). "Aerodynamic Shape Optimization Using the Adjoint Method". http://aero-comlab.stanford.edu/Papers/jameson.vki03.pdf. 
  8. Hazra, S. B.; Schulz, V.; Brezillon, J.; Gauger, N. R. (2005-03-20). "Aerodynamic shape optimization using simultaneous pseudo-timestepping" (in en). Journal of Computational Physics 204 (1): 46–64. doi:10.1016/j.jcp.2004.10.007. ISSN 0021-9991. Bibcode2005JCoPh.204...46H. http://www.sciencedirect.com/science/article/pii/S0021999104004061. 
  9. Somayaji, Mahadevabharath R.; Xenos, Michalis; Zhang, Libin; Mekarski, Megan; Linninger, Andreas A. (2008-01-01). "Systematic design of drug delivery therapies" (in en). Computers & Chemical Engineering. Process Systems Engineering: Contributions on the State-of-the-Art 32 (1): 89–98. doi:10.1016/j.compchemeng.2007.06.014. ISSN 0098-1354. http://www.sciencedirect.com/science/article/pii/S0098135407001688. 
  10. Antil, Harbir; Nochetto, Ricardo H.; Venegas, Pablo (2017-10-19). "Optimizing the Kelvin force in a moving target subdomain". Mathematical Models and Methods in Applied Sciences 28 (1): 95–130. doi:10.1142/S0218202518500033. ISSN 0218-2025. 
  11. Egger, Herbert; Engl, Heinz W. (2005). "Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates". Inverse Problems 21 (3): 1027–1045. doi:10.1088/0266-5611/21/3/014. Bibcode2005InvPr..21.1027E. 

Further reading

External links