Paratingent cone

From HandWiki

In mathematics, the paratingent cone and contingent cone were introduced by Bouligand (1932), and are closely related to tangent cones.

Definition

Let S be a nonempty subset of a real normed vector space (X,).

  1. Let some x¯cl(S) be a point in the closure of S. An element hX is called a tangent (or tangent vector) to S at x¯, if there is a sequence (xn)n of elements xnS and a sequence (λn)n of positive real numbers λn>0 such that x¯=limnxn and h=limnλn(xnx¯).
  2. The set T(S,x¯) of all tangents to S at x¯ is called the contingent cone (or the Bouligand tangent cone) to S at x¯.[1]

An equivalent definition is given in terms of a distance function and the limit infimum. As before, let (X,) be a normed vector space and take some nonempty set SX. For each xX, let the distance function to S be

dS(x):=inf{xxxS}.

Then, the contingent cone to SX at xcl(S) is defined by[2]

TS(x):={v:lim infh0+dS(x+hv)h=0}.

References

  1. Johannes, Jahn (2011). Vector Optimization. Springer Berlin Heidelberg. pp. 90–91. doi:10.1007/978-3-642-17005-8. ISBN 978-3-642-17005-8. https://link.springer.com/book/10.1007/978-3-642-17005-8. 
  2. Aubin, Jean-Pierre; Frankowska, Hèléne (2009). "Chapter 4: Tangent Cones". Set-Valued Analysis. Modern Birkhäuser Classics. Boston: Birkhäuser. p. 121. doi:10.1007/978-0-8176-4848-0_4. ISBN 978-0-8176-4848-0. https://doi.org/10.1007/978-0-8176-4848-0_4.