Partial groupoid
From HandWiki
Group-like structures | |||||
---|---|---|---|---|---|
Totalityα | Associativity | Identity | Invertibility | Commutativity | |
Semigroupoid | Unneeded | Required | Unneeded | Unneeded | Unneeded |
Small Category | Unneeded | Required | Required | Unneeded | Unneeded |
Groupoid | Unneeded | Required | Required | Required | Unneeded |
Magma | Required | Unneeded | Unneeded | Unneeded | Unneeded |
Quasigroup | Required | Unneeded | Unneeded | Required | Unneeded |
Loop | Required | Unneeded | Required | Required | Unneeded |
Semigroup | Required | Required | Unneeded | Unneeded | Unneeded |
Inverse Semigroup | Required | Required | Unneeded | Required | Unneeded |
Monoid | Required | Required | Required | Unneeded | Unneeded |
Group | Required | Required | Required | Required | Unneeded |
Abelian group | Required | Required | Required | Required | Required |
^α Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently. |
In abstract algebra, a partial groupoid (also called halfgroupoid, pargoid, or partial magma) is a set endowed with a partial binary operation.[1][2]
A partial groupoid is a partial algebra.
Partial semigroup
A partial groupoid [math]\displaystyle{ (G,\circ) }[/math] is called a partial semigroup if the following associative law holds:[3]
For all [math]\displaystyle{ x,y,z \in G }[/math] such that [math]\displaystyle{ x\circ y\in G }[/math] and [math]\displaystyle{ y\circ z\in G }[/math], the following two statements hold:
- [math]\displaystyle{ x \circ (y \circ z) \in G }[/math] if and only if [math]\displaystyle{ ( x \circ y) \circ z \in G }[/math], and
- [math]\displaystyle{ x \circ (y \circ z ) = ( x \circ y) \circ z }[/math] if [math]\displaystyle{ x \circ (y \circ z) \in G }[/math] (and, because of 1., also [math]\displaystyle{ ( x \circ y) \circ z \in G }[/math]).
References
- ↑ Evseev, A. E. (1988). "A survey of partial groupoids". in Ben Silver. Nineteen Papers on Algebraic Semigroups. American Mathematical Soc.. ISBN 0-8218-3115-1.
- ↑ Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift. Springer Science & Business Media. 2012. pp. 11 and 82. ISBN 978-3-0348-0405-9. https://archive.org/details/associahedratama00mlle.
- ↑ Schelp, R. H. (1972). "A partial semigroup approach to partially ordered sets". Proceedings of the London Mathematical Society 3 (1): 46–58. doi:10.1112/plms/s3-24.1.46. https://academic.oup.com/plms/article/s3-24/1/46/1572363. Retrieved 1 April 2023.
Further reading
- E.S. Ljapin; A.E. Evseev (1997). The Theory of Partial Algebraic Operations. Springer Netherlands. ISBN 978-0-7923-4609-8.
Original source: https://en.wikipedia.org/wiki/Partial groupoid.
Read more |