Partial groupoid

From HandWiki
Group-like structures
Totalityα Associativity Identity Invertibility Commutativity
Semigroupoid Unneeded Required Unneeded Unneeded Unneeded
Small Category Unneeded Required Required Unneeded Unneeded
Groupoid Unneeded Required Required Required Unneeded
Magma Required Unneeded Unneeded Unneeded Unneeded
Quasigroup Required Unneeded Unneeded Required Unneeded
Loop Required Unneeded Required Required Unneeded
Semigroup Required Required Unneeded Unneeded Unneeded
Inverse Semigroup Required Required Unneeded Required Unneeded
Monoid Required Required Required Unneeded Unneeded
Group Required Required Required Required Unneeded
Abelian group Required Required Required Required Required
Closure, which is used in many sources, is an equivalent axiom to totality, though defined differently.

In abstract algebra, a partial groupoid (also called halfgroupoid, pargoid, or partial magma) is a set endowed with a partial binary operation.[1][2]

A partial groupoid is a partial algebra.

Partial semigroup

A partial groupoid [math]\displaystyle{ (G,\circ) }[/math] is called a partial semigroup if the following associative law holds:[3]

For all [math]\displaystyle{ x,y,z \in G }[/math] such that [math]\displaystyle{ x\circ y\in G }[/math] and [math]\displaystyle{ y\circ z\in G }[/math], the following two statements hold:

  1. [math]\displaystyle{ x \circ (y \circ z) \in G }[/math] if and only if [math]\displaystyle{ ( x \circ y) \circ z \in G }[/math], and
  2. [math]\displaystyle{ x \circ (y \circ z ) = ( x \circ y) \circ z }[/math] if [math]\displaystyle{ x \circ (y \circ z) \in G }[/math] (and, because of 1., also [math]\displaystyle{ ( x \circ y) \circ z \in G }[/math]).

References

  1. Evseev, A. E. (1988). "A survey of partial groupoids". in Ben Silver. Nineteen Papers on Algebraic Semigroups. American Mathematical Soc.. ISBN 0-8218-3115-1. 
  2. Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift. Springer Science & Business Media. 2012. pp. 11 and 82. ISBN 978-3-0348-0405-9. https://archive.org/details/associahedratama00mlle. 
  3. Schelp, R. H. (1972). "A partial semigroup approach to partially ordered sets". Proceedings of the London Mathematical Society 3 (1): 46–58. doi:10.1112/plms/s3-24.1.46. https://academic.oup.com/plms/article/s3-24/1/46/1572363. Retrieved 1 April 2023. 

Further reading

  • E.S. Ljapin; A.E. Evseev (1997). The Theory of Partial Algebraic Operations. Springer Netherlands. ISBN 978-0-7923-4609-8.