Pascal's rule

From HandWiki
Short description: Combinatorial identity about binomial coefficients

In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k, [math]\displaystyle{ {n-1\choose k} + {n-1\choose k-1} = {n\choose k}, }[/math] where [math]\displaystyle{ \tbinom{n}{k} }[/math] is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k,[1] since, if n < k the value of the binomial coefficient is zero and the identity remains valid.

Pascal's rule can also be viewed as a statement that the formula [math]\displaystyle{ \frac{(x+y)!}{x!y!} = {x+y \choose x} = {x+y \choose y} }[/math] solves the linear two-dimensional difference equation [math]\displaystyle{ N_{x,y} = N_{x-1,y} + N_{x,y-1}, \quad N_{0,y} = N_{x,0} = 1 }[/math] over the natural numbers. Thus, Pascal's rule is also a statement about a formula for the numbers appearing in Pascal's triangle.

Pascal's rule can also be generalized to apply to multinomial coefficients.

Combinatorial proof

Illustrates combinatorial proof: [math]\displaystyle{ \binom 4 1+\binom 4 2=\binom 5 2. }[/math]

Pascal's rule has an intuitive combinatorial meaning, that is clearly expressed in this counting proof.[2]:{{{1}}}

Proof. Recall that [math]\displaystyle{ \tbinom{n}{k} }[/math] equals the number of subsets with k elements from a set with n elements. Suppose one particular element is uniquely labeled X in a set with n elements.

To construct a subset of k elements containing X, include X and choose k − 1 elements from the remaining n − 1 elements in the set. There are [math]\displaystyle{ \tbinom{n-1}{k-1} }[/math] such subsets.

To construct a subset of k elements not containing X, choose k elements from the remaining n − 1 elements in the set. There are [math]\displaystyle{ \tbinom{n-1}{k} }[/math] such subsets.

Every subset of k elements either contains X or not. The total number of subsets with k elements in a set of n elements is the sum of the number of subsets containing X and the number of subsets that do not contain X, [math]\displaystyle{ \tbinom{n-1}{k-1} + \tbinom{n-1}{k} }[/math].

This equals [math]\displaystyle{ \tbinom{n}{k} }[/math]; therefore, [math]\displaystyle{ \tbinom{n}{k} = \tbinom{n-1}{k-1} + \tbinom{n-1}{k} }[/math].

Algebraic proof

Alternatively, the algebraic derivation of the binomial case follows. [math]\displaystyle{ \begin{align} { n-1 \choose k } + { n-1 \choose k-1} & = \frac{(n-1)!}{k! (n - 1 - k)!} + \frac{(n-1)!}{(k - 1)!(n - k)!} \\ & = (n-1)! \left[ \frac{n - k}{k!(n - k)!} + \frac{k}{k!(n - k)!}\right] \\ & = (n-1)! \frac{n}{k!(n - k)!} \\ & = \frac{n!}{k!(n - k)!} \\ & = \binom{n}{k}. \end{align} }[/math]

Generalization

Pascal's rule can be generalized to multinomial coefficients.[2]:{{{1}}} For any integer p such that [math]\displaystyle{ p \ge 2 }[/math], [math]\displaystyle{ k_1, k_2, k_3, \dots, k_p \in \mathbb{N}^{+}\!, }[/math] and [math]\displaystyle{ n = k_1 + k_2 + k_3 + \cdots + k_p \ge 1 }[/math], [math]\displaystyle{ {n-1\choose k_1-1,k_2,k_3, \dots, k_p}+{n-1 \choose k_1,k_2-1,k_3,\dots, k_p}+\cdots+{n-1\choose k_1,k_2,k_3,\dots,k_p-1} = {n\choose k_1, k_2, k_3, \dots, k_p} }[/math] where [math]\displaystyle{ {n\choose k_1, k_2, k_3, \dots , k_p} }[/math] is the coefficient of the [math]\displaystyle{ x_1^{k_1}x_2^{k_2}\cdots x_p^{k_p} }[/math] term in the expansion of [math]\displaystyle{ (x_1 + x_2 + \dots + x_p)^{n} }[/math].

The algebraic derivation for this general case is as follows.[2]:{{{1}}} Let p be an integer such that [math]\displaystyle{ p \ge 2 }[/math], [math]\displaystyle{ k_1, k_2, k_3, \dots, k_p \in \mathbb{N}^{+}\!, }[/math] and [math]\displaystyle{ n = k_1 + k_2 + k_3 + \cdots + k_p \ge 1 }[/math]. Then [math]\displaystyle{ \begin{align} & {} \quad {n-1 \choose k_1-1,k_2,k_3, \dots, k_p}+{n-1 \choose k_1,k_2-1,k_3,\dots, k_p} + \cdots + {n-1 \choose k_1,k_2,k_3,\dots,k_p-1} \\ & = \frac{(n-1)!}{(k_1-1)!k_2!k_3! \cdots k_p!} + \frac{(n-1)!}{k_1!(k_2-1)!k_3!\cdots k_p!} + \cdots + \frac{(n-1)!}{k_1!k_2!k_3! \cdots (k_p-1)!} \\ & = \frac{k_1(n-1)!}{k_1!k_2!k_3! \cdots k_p!} + \frac{k_2(n-1)!}{k_1!k_2!k_3! \cdots k_p!} + \cdots + \frac{k_p(n-1)!}{k_1!k_2!k_3! \cdots k_p!} = \frac{(k_1+k_2+\cdots+k_p) (n-1)!}{k_1!k_2!k_3!\cdots k_p!} \\ & = \frac{n(n-1)!}{k_1!k_2!k_3! \cdots k_p!} = \frac{n!}{k_1!k_2!k_3! \cdots k_p!} = {n \choose k_1, k_2, k_3, \dots, k_p}. \end{align} }[/math]

See also

References

  1. Mazur, David R. (2010), Combinatorics / A Guided Tour, Mathematical Association of America, p. 60, ISBN 978-0-88385-762-5 
  2. 2.0 2.1 2.2 Brualdi, Richard A. (2010), Introductory Combinatorics (5th ed.), Prentice-Hall, ISBN 978-0-13-602040-0 

Bibliography

External links