Physics:1s Slater-type function
A normalized 1s Slater-type function is a function which is used in the descriptions of atoms and in a broader way in the description of atoms in molecules. It is particularly important as the accurate quantum theory description of the smallest free atom, hydrogen. It has the form
- [math]\displaystyle{ \psi_{1s}(\zeta, \mathbf{r - R}) = \left(\frac{\zeta^3}{\pi}\right)^{1 \over 2} \, e^{-\zeta |\mathbf{r - R}|}. }[/math][1]
It is a particular case of a Slater-type orbital (STO) in which the principal quantum number n is 1. The parameter [math]\displaystyle{ \zeta }[/math] is called the Slater orbital exponent. Related sets of functions can be used to construct STO-nG basis sets which are used in quantum chemistry.
Applications for hydrogen-like atomic systems
A hydrogen-like atom or a hydrogenic atom is an atom with one electron. Except for the hydrogen atom itself (which is neutral) these atoms carry positive charge [math]\displaystyle{ e(\mathbf Z-1) }[/math], where [math]\displaystyle{ \mathbf Z }[/math] is the atomic number of the atom. Because hydrogen-like atoms are two-particle systems with an interaction depending only on the distance between the two particles, their (non-relativistic) Schrödinger equation can be exactly solved in analytic form. The solutions are one-electron functions and are referred to as hydrogen-like atomic orbitals.[2]
The electronic Hamiltonian (in atomic units) of a Hydrogenic system is given by
[math]\displaystyle{ \mathbf{\hat{H}}_e = - \frac{\nabla^2}{2} - \frac{\mathbf Z}{r} }[/math], where [math]\displaystyle{ \mathbf Z }[/math] is the nuclear charge of the hydrogenic atomic system. The 1s electron of a hydrogenic systems can be accurately described by the corresponding Slater orbital:
[math]\displaystyle{ \mathbf \psi_{1s} = \left (\frac{\zeta^3}{\pi} \right ) ^{0.50}e^{-\zeta r} }[/math], where [math]\displaystyle{ \mathbf \zeta }[/math] is the Slater exponent. This state, the ground state, is the only state that can be described by a Slater orbital. Slater orbitals have no radial nodes, while the excited states of the hydrogen atom have radial nodes.
Exact energy of a hydrogen-like atom
The energy of a hydrogenic system can be exactly calculated analytically as follows :
[math]\displaystyle{ \mathbf E_{1s} = \frac{\langle\psi_{1s}|\mathbf{\hat{H}}_e|\psi_{1s}\rangle}{\langle\psi_{1s}|\psi_{1s}\rangle} }[/math], where [math]\displaystyle{ \mathbf{\langle\psi_{1s}|\psi_{1s}\rangle} = 1 }[/math]
[math]\displaystyle{ \mathbf E_{1s} = \langle\psi_{1s}|\mathbf - \frac{\nabla^2}{2} - \frac{\mathbf Z}{r}|\psi_{1s}\rangle }[/math]
[math]\displaystyle{ \mathbf E_{1s} = \langle\psi_{1s}|\mathbf - \frac{\nabla^2}{2}|\psi_{1s}\rangle+\langle\psi_{1s}| - \frac{\mathbf Z}{r}|\psi_{1s}\rangle }[/math]
[math]\displaystyle{ \mathbf E_{1s} = \langle\psi_{1s}|\mathbf - \frac{1}{2r^2}\frac{\partial}{\partial r}\left (r^2 \frac{\partial}{\partial r}\right )|\psi_{1s}\rangle+\langle\psi_{1s}| - \frac{\mathbf Z}{r}|\psi_{1s}\rangle }[/math]. Using the expression for Slater orbital, [math]\displaystyle{ \mathbf \psi_{1s} = \left (\frac{\zeta^3}{\pi} \right ) ^{0.50}e^{-\zeta r} }[/math] the integrals can be exactly solved. Thus,
[math]\displaystyle{ \mathbf E_{1s} = \left\langle \left(\frac{\zeta^3}{\pi} \right)^{0.50} e^{-\zeta r} \right|\left. -\left(\frac{\zeta^3}{\pi} \right)^{0.50}e^{-\zeta r}\left[\frac{-2r\zeta+r^2\zeta^2}{2r^2}\right]\right\rangle+\langle\psi_{1s}| - \frac{\mathbf Z}{r}|\psi_{1s}\rangle }[/math]
[math]\displaystyle{ \mathbf E_{1s} = \frac{\zeta^2}{2}-\zeta \mathbf Z. }[/math]
The optimum value for [math]\displaystyle{ \mathbf \zeta }[/math] is obtained by equating the differential of the energy with respect to [math]\displaystyle{ \mathbf \zeta }[/math] as zero.
[math]\displaystyle{ \frac{d\mathbf E_{1s}}{d\zeta}=\zeta-\mathbf Z=0 }[/math]. Thus [math]\displaystyle{ \mathbf \zeta=\mathbf Z. }[/math]
Non-relativistic energy
The following energy values are thus calculated by using the expressions for energy and for the Slater exponent.
Hydrogen : H
[math]\displaystyle{ \mathbf Z=1 }[/math] and [math]\displaystyle{ \mathbf \zeta=1 }[/math]
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−0.5 Eh
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−13.60569850 eV
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−313.75450000 kcal/mol
Gold : Au(78+)
[math]\displaystyle{ \mathbf Z=79 }[/math] and [math]\displaystyle{ \mathbf \zeta=79 }[/math]
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−3120.5 Eh
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−84913.16433850 eV
[math]\displaystyle{ \mathbf E_{1s}= }[/math]−1958141.8345 kcal/mol.
Relativistic energy of Hydrogenic atomic systems
Hydrogenic atomic systems are suitable models to demonstrate the relativistic effects in atomic systems in a simple way. The energy expectation value can calculated by using the Slater orbitals with or without considering the relativistic correction for the Slater exponent [math]\displaystyle{ \mathbf \zeta }[/math]. The relativistically corrected Slater exponent [math]\displaystyle{ \mathbf \zeta_{rel} }[/math] is given as
[math]\displaystyle{ \mathbf \zeta_{rel}= \frac{\mathbf Z}{\sqrt {1-\mathbf Z^2/c^2}} }[/math].
The relativistic energy of an electron in 1s orbital of a hydrogenic atomic systems is obtained by solving the Dirac equation.
[math]\displaystyle{ \mathbf E_{1s}^{rel} = -(c^2+\mathbf Z\zeta)+\sqrt{c^4+\mathbf Z^2\zeta^2} }[/math].
Following table illustrates the relativistic corrections in energy and it can be seen how the relativistic correction scales with the atomic number of the system.
Atomic system | [math]\displaystyle{ \mathbf Z }[/math] | [math]\displaystyle{ \mathbf \zeta_{non rel} }[/math] | [math]\displaystyle{ \mathbf \zeta_{rel} }[/math] | [math]\displaystyle{ \mathbf E_{1s}^{non rel} }[/math] | [math]\displaystyle{ \mathbf E_{1s}^{rel} }[/math]using [math]\displaystyle{ \mathbf \zeta_{non rel} }[/math] | [math]\displaystyle{ \mathbf E_{1s}^{rel} }[/math]using [math]\displaystyle{ \mathbf \zeta_{rel} }[/math] |
H | 1 | 1.00000000 | 1.00002663 | −0.50000000 Eh | −0.50000666 Eh | −0.50000666 Eh |
−13.60569850 eV | −13.60587963 eV | −13.60587964 eV | ||||
−313.75450000 kcal/mol | −313.75867685 kcal/mol | −313.75867708 kcal/mol | ||||
Au(78+) | 79 | 79.00000000 | 96.68296596 | −3120.50000000 Eh | −3343.96438929 Eh | −3434.58676969 Eh |
−84913.16433850 eV | −90993.94255075 eV | −93459.90412098 eV | ||||
−1958141.83450000 kcal/mol | −2098367.74995699 kcal/mol | −2155234.10926142 kcal/mol |
References
- ↑ Attila Szabo; Neil S. Ostlund (1996). Modern Quantum Chemistry - Introduction to Advanced Electronic Structure Theory. Dover Publications Inc.. pp. 153. ISBN 0-486-69186-1. https://archive.org/details/modernquantumche00szab.
- ↑ In quantum chemistry an orbital is synonymous with "one-electron function", i.e., a function of x, y, and z.
Original source: https://en.wikipedia.org/wiki/1s Slater-type function.
Read more |