Physics:Atom optics

From HandWiki
Short description: Beams of atom matter waves with optical properties

Atom optics (or atomic optics) "refers to techniques to manipulate the trajectories and exploit the wave properties of neutral atoms".[1] Typical experiments employ beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate[2] or a concave atomic mirror.[3]

For comprehensive overviews of atom optics, see the 1994 review by Adams, Sigel, and Mlynek[1] or the 2009 review by Cronin, Jörg, and Pritchard.[4] More bibliography about Atom Optics can be found at the Resource Letter.[5] For quantum atom optics see the 2018 review by Pezzè Smerzi Oberthaler Schmied. [6]

History

Interference of atom matter waves was first observed by Esterman and Stern in 1930, when a Na beam was diffracted off a surface of NaCl.[7] The short de Broglie wavelength of atoms prevented progress for many years until two technological breakthroughs revived interest: microlithography allowing precise small devices and laser cooling allowing atoms to be slowed, increasing their de Broglie wavelength.[1]

Until 2006, the resolution of imaging systems based on atomic beams was not better than that of an optical microscope, mainly due to the poor performance of the focusing elements. Such elements use small numerical aperture; usually, atomic mirrors use grazing incidence, and the reflectivity drops drastically with increase of the grazing angle; for efficient normal reflection, atoms should be ultracold, and dealing with such atoms usually involves magnetic, magneto-optical or optical traps.

Recent scientific publications about Atom Nano-Optics, evanescent field lenses[8] and ridged mirrors[9][10] show significant improvement since the beginning of the 21st century. In particular, an atomic hologram can be realized.[11]


See also

References

  1. 1.0 1.1 1.2 Adams, C.S; Sigel, M; Mlynek, J (1994). "Atom optics". Physics Reports (Elsevier BV) 240 (3): 143–210. doi:10.1016/0370-1573(94)90066-3. ISSN 0370-1573. 
  2. R.B.Doak; R.E.Grisenti; S.Rehbein; G.Schmahl; J.P.Toennies; Ch. Wöll (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates". Physical Review Letters 83 (21): 4229–4232. doi:10.1103/PhysRevLett.83.4229. Bibcode1999PhRvL..83.4229D. http://www.atomwave.org/rmparticle/ao%20refs/aifm%20refs%20sorted%20by%20topic/nano-structures/fesnell%20zone%20plates/DGR99.pdf. 
  3. J.J.Berkhout; O.J.Luiten; I.D.Setija; T.W.Hijmans; T.Mizusaki; J.T.M.Walraven (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror". Physical Review Letters 63 (16): 1689–1692. doi:10.1103/PhysRevLett.63.1689. PMID 10040645. Bibcode1989PhRvL..63.1689B. https://pure.uva.nl/ws/files/2216160/46633_20y.pdf. 
  4. Cronin, Alexander D.; Jörg Schmiedmayer; David E. Pritchard (2009). "Optics and interferometry with atoms and molecules". Reviews of Modern Physics 81 (3): 1051. doi:10.1103/RevModPhys.81.1051. Bibcode2009RvMP...81.1051C. http://www.atomwave.org/rmparticle/RMPLAO.pdf. 
  5. Rohwedder, B. (2007). "Resource Letter AON-1: Atom optics, a tool for nanofabrication". American Journal of Physics 75 (5): 394–406. doi:10.1119/1.2673209. Bibcode2007AmJPh..75..394R. 
  6. Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (2018-09-05). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics (American Physical Society (APS)) 90 (3): 035005. doi:10.1103/revmodphys.90.035005. ISSN 0034-6861. 
  7. Estermann, I.; Stern, Otto (1930). "Beugung von Molekularstrahlen". Z. Phys. 61 (1–2): 95. doi:10.1007/bf01340293. Bibcode1930ZPhy...61...95E. 
  8. V.Balykin, V.Klimov, and V.Letokhov. Optics and Photonics News, March 2005, p.44-48; http://www.osa-opn.org/abstract.cfm?URI=OPN-16-3-44[yes|permanent dead link|dead link}}]
  9. H.Oberst; D.Kouznetsov; K.Shimizu; J.Fujita; F. Shimizu (2005). "Fresnel Diffraction Mirror for an Atomic Wave". Physical Review Letters 94 (1): 013203. doi:10.1103/PhysRevLett.94.013203. PMID 15698079. Bibcode2005PhRvL..94a3203O. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000094000001013203000001&idtype=cvips&gifs=yes. 
  10. D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B 39 (7): 1605–1623. doi:10.1088/0953-4075/39/7/005. Bibcode2006JPhB...39.1605K. http://stacks.iop.org/0953-4075/39/1605. 
  11. Shimizu; J. Fujita (2002). "Reflection-Type Hologram for Atoms". Physical Review Letters 88 (12): 123201. doi:10.1103/PhysRevLett.88.123201. PMID 11909457. Bibcode2002PhRvL..88l3201S.