Physics:Conformal vector field
From HandWiki
A conformal vector field (often conformal Killing vector field and occasionally conformal or conformal collineation) of a Riemannian manifold [math]\displaystyle{ (M,g) }[/math] is a vector field [math]\displaystyle{ X }[/math] that satisfies:
- [math]\displaystyle{ \mathcal{L}_X g=\varphi g }[/math]
for some smooth real-valued function [math]\displaystyle{ \varphi }[/math] on [math]\displaystyle{ M }[/math], where [math]\displaystyle{ \mathcal{L}_X g }[/math] denotes the Lie derivative of the metric [math]\displaystyle{ g }[/math] with respect to [math]\displaystyle{ X }[/math]. In the case that [math]\displaystyle{ \varphi }[/math] is identically zero, [math]\displaystyle{ X }[/math] is called a Killing vector field.
See also
- Affine vector field
- Curvature collineation
- Homothetic vector field
- Killing vector field
- Matter collineation
- Spacetime symmetries