Physics:Giant birefringence
When values of birefingence are very high, the property is termed giant birefringence which more generically is called giant optical anisotropy. Values for giant birefringence exceed 0.3. Much bigger numbers (over 2.0) are termed "colossal birefringence". These are achieved using nanostructures.[1] Some oxides, for example borate or iodate can have high birefringence. Also compounds containing C=O bonds have higher levels. These include oxalates, squarates and cyanurates. One trade-off is with band gap. If the band gap is small, then the material is not transparent to visible light, but can be transparent for infrared. Chalgogenides may have high birefringence, but only in the infrared. Halide perovskites such as CsPbBrxCl3-x have fairly high birefringence that varies significantly in the optical spectrum.[2]
Some transition metal oxyhalides: MoOCl4, WOCl4, have birefringence in the giant category and MoO2Br2, WOBr4, NbOBr2, and NbOI2 are predicted to have birefringence over 0.6 at 1065 nm.[3]
List
substance | formula | birefringence | band gap eV | comment | reference |
---|---|---|---|---|---|
guanidinium hydrogen squarate | C(NH2)3(HC4O4) | 0.313@546 nm | [4] | ||
NbSe2I2 | 0.313 | [5] | |||
LiBF2C2O4 | 0.317@546 nm | [6] | |||
barium cyanurate | Ba3(C3N3O3)2 | 0.32@800 nm | [7] | ||
pentazinc dicyanurate tetrahydroxide | Zn5(OH)4(C3N3O3)2 | 0.32@400 nm | [8] | ||
magnesium tetrazinc dicyanurate tetrahydroxide | MgZn4(OH)4(C3N3O3)2 | 0.32@400 nm | [8] | ||
pyridinium antimony oxalate difluoride hydrate | [C(NH2)3]Sb(C2O4)F2·H2O | 0.323@546 nm | [9] | ||
Cs2Sb2(C2O4)2-F4·H2O | 0.325@546 nm | [10] | |||
β-(C3H7N6)2Cl2·H2O | 0.33–0.38@550 nm | [11] | |||
(C3H7N6)F·H2O | 0.33–0.38@550 nm | [11] | |||
scandium diiodate nitrate | Sc(IO3)2(NO3) | 0.348 at 546 nm | [12] | ||
potassium indium tetra(iso-cyamelurate) octadecahydrate | K0.5In0.5(H2C6N7O3)2·9H2O | 0.35@1064 nm | 4.05 eV | [13] | |
calcium squarate | CaC4O4 | 0.35@1064 | [14] | ||
tristrontium dicyanurate | β-Sr3(C3N3O3) | 0.35 | [14] | ||
cerium difluoride sulfate | CeF2(SO4) | 0.361 | [15] | ||
Na4Ba3(S2)4S3 | 0.37 at 1064 nm | [16] | |||
guanidinium hydrogen oxalate hydrate | [C(NH2)3]HC2O4·H2O | 0.371@532 nm | [17] | ||
Cs2Pb4Br10 | 0.392 @ 550 nm | [18] | |||
RbNH4(H2C3N3O3)2·2H2O | 0.40 @ 1064 nm | 5.24 | [19] | ||
dipotasium hydrogen trithiocyanate hemihydrate | K4(HC3N3S3)2·H2O | 0.402 @550 nm | [20] | ||
K1.03(NH4)0.97(I5O12)(IO3) | 0.405 @546 nm | [21] | |||
LCHCY hydroisocyanurate | Li2Ca(H2C3N3O3)4·6H2O | 0.407@800 nm | [22] | ||
guanidinium dihydrogen cyanurate | C(NH2)3(H2C3N3O3) | 0.419@400 nm | UV cutoff 238 nm | [23] | |
(NH4)2(I5O12)(IO3) | 0.431 @546 nm | [21] | |||
tripotassium cyamelurate dihydrate | K3C6N7O3·2H2O | 0.446@1064 nm | [24] | ||
Al4(P2S6)3 | 0.47 @ 2050 nm | [25] | |||
sodium hydrogen squarate hydrate | NaHC4O4·H2O | 0.52 at 1064 nm | [26] | ||
HgB2S4 | 0.52 at 1064 nm | [27] | |||
tricaesium tricyanomelaminate hydrate | Cs3C6N9•H2O | 0.52@550 nm | [28] | ||
CrSbSe3 | 0.56 at 650 nm | [29] | |||
Cs2S6 | 0.58@1064 nm | [16] | |||
trithiocyanurate | Cs2Mg(H2C3N3S3)4·8H2O | 0.58@800 nm | UV cutoff 374 nm | [23] | |
ZrTe5 | 0.58 @ 942 nm | [30] | |||
Ba2HgTe5 | 0.643@2090 nm | 1.28 | [31] | ||
mercury hexathiodiphosphate | Hg2P2S6 | 0.65@546 nm,
0.50 @ 1064 nm, 0.48 @2050 nm |
[25] | ||
Ba6Sb6O2S13 | 0.66 at 2050 nm | black; thermal conductivity of 0.25 W m−1 K−1 at 700 K | [32] | ||
Sn2PO4I | 0.664@546 nm | [33] | |||
Na2BP2 | 0.68 | [14] | |||
hexagonal boron nitride | h-BN | 0.7 | [34] | ||
BaTiSe3 | 0.7 | [35] | |||
BaTiS3 | 0.76 | [35][36] | |||
vanadium dioxide | VO2 | >0.9 | in thin film | [37] | |
sodium rhodizonate | Na2C6O6 | 1.35@2500 | 1.6 | brown | [14] |
molybdenum ditelluride | MoTe2 | 1.54 mid IR | [38] | ||
tungsten disulfide | WS2 | 1.95 | refractive indexes 4.96, 3.01 | [39] | |
Sr9/8TiS3 | 2.1 in mid IR | ne = 4.5 no = 2.4 | [40] |
References
- ↑ Mei, Hongyan; Ren, Guodong; Zhao, Boyang; Salman, Jad; Jung, Gwan-Yeong; Chen, Huandong; Thind, Arashdeep S.; Cavin, John et al. (2023-05-07). "Colossal Birefringence from Periodic Structural Modulations" (in EN). CLEO 2023 (2023), Paper STh4H.4 (Optica Publishing Group): STh4H.4. doi:10.1364/CLEO_SI.2023.STh4H.4. ISBN 978-1-957171-25-8. https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2023-STh4H.4.
- ↑ Ermolaev, Georgy; Pushkarev, Anatoly P.; Zhizhchenko, Alexey; Kuchmizhak, Aleksandr A.; Iorsh, Ivan; Kruglov, Ivan; Mazitov, Arslan; Ishteev, Arthur et al. (12 April 2023). "Giant and Tunable Excitonic Optical Anisotropy in Single-Crystal Halide Perovskites". Nano Letters 23 (7): 2570–2577. doi:10.1021/acs.nanolett.2c04792. PMID 36920328. Bibcode: 2023NanoL..23.2570E.
- ↑ Pan, Xueting; Huang, Junben; Huang, Yineng (2024-01-14). "Screening Large Birefringent Materials via Halogen Regulation in Ternary d 0 -Transition Metal Oxyhalides" (in en). The Journal of Physical Chemistry C. doi:10.1021/acs.jpcc.3c07641. ISSN 1932-7447. https://pubs.acs.org/doi/10.1021/acs.jpcc.3c07641.
- ↑ Wang, Hongmei; Wang, Qiang; Wang, Qin; Cao, Liling; Huang, Ling; Gao, Daojiang; Bi, Jian; Zou, Guohong (2022-07-06). "Yin–Yang Complementarity Strategy Achieving Giant Optical Anisotropy in a Metal-free Birefringent Material C(NH 2 ) 3 (HC 4 O 4 )" (in en). Crystal Growth & Design 22 (7): 4236–4242. doi:10.1021/acs.cgd.2c00255. ISSN 1528-7483. https://pubs.acs.org/doi/10.1021/acs.cgd.2c00255.
- ↑ Natarajan, Arul Raj; Ponvijayakanthan, L; Sharma, Vineet Kumar; Pujari, Bhalchandra S; Vaitheeswaran, G; Kanchana, V (2021-12-01). "Anisotropic transport and optical birefringence of triclinic bulk and monolayer NbX 2 Y 2 (X = S, Se and Y = Cl, Br, I)". Journal of Physics: Condensed Matter 33 (48): 485501. doi:10.1088/1361-648X/ac2116. ISSN 0953-8984. PMID 34433138. Bibcode: 2021JPCM...33V5501N. https://iopscience.iop.org/article/10.1088/1361-648X/ac2116.
- ↑ Cheng, Meng; Jin, Congcong; Jin, Wenqi; Hou, Xueling (2023-06-12). "Target-Oriented Synthesis of Borate Derivatives Featuring Isolated [B 3 O 3 Six-Membered Rings as Structural Features"] (in en). Inorganic Chemistry 62 (23): 9209–9216. doi:10.1021/acs.inorgchem.3c01112. ISSN 0020-1669. PMID 37257153. https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c01112.
- ↑ Tang, Jian; Liang, Fei; Meng, Xianghe; Kang, Kaijin; Yin, Wenlong; Zeng, Tixian; Xia, Mingjun; Lin, Zheshuai et al. (2019-02-06). "Ba 3 (C 3 N 3 O 3 ) 2 : A New Phase of Barium Cyanurate Containing Parallel π-Conjugated Groups as a Birefringent Material Replacement for Calcite" (in en). Crystal Growth & Design 19 (2): 568–572. doi:10.1021/acs.cgd.8b01782. ISSN 1528-7483. https://pubs.acs.org/doi/10.1021/acs.cgd.8b01782.
- ↑ 8.0 8.1 Liu, Xiaomeng; Gong, Pifu; Lin, Zheshuai (2021-08-02). "AZn 4 (OH) 4 (C 3 N 3 O 3 ) 2 (A = Mg, Zn): Two Zn-Based Cyanurate Crystals with Various Cation Coordination and Large Birefringence" (in en). Inorganic Chemistry 60 (15): 10890–10894. doi:10.1021/acs.inorgchem.1c01808. ISSN 0020-1669. PMID 34269585. https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01808.
- ↑ Zhang, Die; Wang, Qiang; Ren, Liying; Cao, Liling; Huang, Ling; Gao, Daojiang; Bi, Jian; Zou, Guohong (2022-08-08). "Sharp Enhancement of Birefringence in Antimony Oxalates Achieved by the Cation–Anion Synergetic Interaction Strategy" (in en). Inorganic Chemistry 61 (31): 12481–12488. doi:10.1021/acs.inorgchem.2c02262. ISSN 0020-1669. PMID 35894629. https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c02262.
- ↑ Zhang, Die; Wang, Qiang; Zheng, Ting; Cao, Liling; Ok, Kang Min; Gao, Daojiang; Bi, Jian; Huang, Ling et al. (November 2022). "Cation-anion synergetic interactions achieving tunable birefringence in quasi-one-dimensional antimony(III) fluoride oxalates" (in en). Science China Materials 65 (11): 3115–3124. doi:10.1007/s40843-022-2088-0. ISSN 2095-8226.
- ↑ 11.0 11.1 Shen, Yaoguo; Ma, Liang; Dong, Guofa; Yu, Hualiang; Luo, Junhua (2023). "β-(C 3 H 7 N 6 ) 2 Cl 2 ·H 2 O and (C 3 H 7 N 6 )F·H 2 O: two UV birefringent crystals induced by uniformly aligned structural groups" (in en). Inorganic Chemistry Frontiers 10 (7): 2022–2029. doi:10.1039/D2QI02535C. ISSN 2052-1553. http://xlink.rsc.org/?DOI=D2QI02535C.
- ↑ Wu, Chao; Jiang, Xingxing; Wang, Zujian; Lin, Lin; Lin, Zheshuai; Huang, Zhipeng; Long, Xifa; Humphrey, Mark G. et al. (2021-02-15). "Giant Optical Anisotropy in the UV‐Transparent 2D Nonlinear Optical Material Sc(IO 3 ) 2 (NO 3 )" (in en). Angewandte Chemie International Edition 60 (7): 3464–3468. doi:10.1002/anie.202012456. ISSN 1433-7851. PMID 33146456. https://onlinelibrary.wiley.com/doi/10.1002/anie.202012456.
- ↑ Zhang, Limei; Wang, Fangyan; Zhang, Xinyuan; Liang, Fei; Hu, Zhanggui; Wu, Yicheng (2024-01-08). "Synthesis and Characterization of Metal Iso-cyamelurate K 0.5 In 0.5 (H 2 C 6 N 7 O 3 ) 2 ·9H 2 O with Large Birefringence" (in en). Crystal Growth & Design. doi:10.1021/acs.cgd.3c01248. ISSN 1528-7483. https://pubs.acs.org/doi/10.1021/acs.cgd.3c01248.
- ↑ 14.0 14.1 14.2 14.3 Tong, Tinghao; Zhang, Wenyao; Yang, Zhihua; Pan, Shilie (2021-01-18). "Series of Crystals with Giant Optical Anisotropy: A Targeted Strategic Research" (in en). Angewandte Chemie International Edition 60 (3): 1332–1338. doi:10.1002/anie.202011006. ISSN 1433-7851. PMID 33025703. https://onlinelibrary.wiley.com/doi/10.1002/anie.202011006.
- ↑ Wu, Chao; Wu, Tianhui; Jiang, Xingxing; Wang, Zujian; Sha, Hongyuan; Lin, Lin; Lin, Zheshuai; Huang, Zhipeng et al. (2021-03-24). "Large Second-Harmonic Response and Giant Birefringence of CeF 2 (SO 4 ) Induced by Highly Polarizable Polyhedra" (in en). Journal of the American Chemical Society 143 (11): 4138–4142. doi:10.1021/jacs.1c00416. ISSN 0002-7863. PMID 33625206. https://pubs.acs.org/doi/10.1021/jacs.1c00416.
- ↑ 16.0 16.1 Li, Guangmao; Yang, Zhihua; Hou, Xueling; Pan, Shilie (2023-05-22). "Chain‐like [S x ( x =2–6) Units Realizing Giant Birefringence with Transparency in the Near‐Infrared for Optoelectronic Materials"] (in en). Angewandte Chemie 135 (22). doi:10.1002/ange.202303711. ISSN 0044-8249. https://onlinelibrary.wiley.com/doi/10.1002/ange.202303711.
- ↑ Xia, Ming; Mutailipu, Miriding; Li, Fuming; Yang, Zhihua; Pan, Shilie (2021-03-03). "Finding Short-Wavelength Birefringent Crystals with Large Optical Anisotropy Activated by π-Conjugated [C(NH 2 ) 3 Units"] (in en). Crystal Growth & Design 21 (3): 1869–1877. doi:10.1021/acs.cgd.1c00024. ISSN 1528-7483. https://pubs.acs.org/doi/10.1021/acs.cgd.1c00024.
- ↑ Chen, Bo; Chen, Hao; Zhang, Shaobin; Shen, Yaoguo (November 2023). "Cs2Pb4Br10: A layered perovskite shows large birefringence" (in en). Inorganic Chemistry Communications 157: 111234. doi:10.1016/j.inoche.2023.111234. https://linkinghub.elsevier.com/retrieve/pii/S1387700323008468.
- ↑ Aibibula, Mukeremu; Wang, Li (October 2020). "A UV birefringent crystal: RbNH4(H2C3N3O3)2·2H2O" (in en). Inorganic Chemistry Communications 120: 108149. doi:10.1016/j.inoche.2020.108149. https://linkinghub.elsevier.com/retrieve/pii/S1387700320307395.
- ↑ Xu, Qianting; Liu, Youchao; Wu, Qingchen; Hou, Linxi; Li, Yanqiang; Li, Lina; Lin, Zheshuai; Zhao, Sangen et al. (August 2023). "A BBO-like trithiocyanate with significantly enhanced birefringence and second-harmonic generation" (in en). Science China Materials 66 (8): 3271–3277. doi:10.1007/s40843-023-2439-8. ISSN 2095-8226.
- ↑ 21.0 21.1 Ma, Nan; Chen, Jin; Li, Bing‐Xuan; Hu, Chun‐Li; Mao, Jiang‐Gao (2023-07-25). "(NH 4 ) 2 (I 5 O 12 )(IO 3 ) and K 1.03 (NH 4 ) 0.97 (I 5 O 12 )(IO 3 ): Mixed‐Valent Polyiodates with Unprecedented I 5 O 12 − Unit Exhibiting Strong Second‐Harmonic Generation Responses and Giant Birefringence" (in en). Small 19 (47): e2304388. doi:10.1002/smll.202304388. ISSN 1613-6810. PMID 37490526. https://onlinelibrary.wiley.com/doi/10.1002/smll.202304388.
- ↑ Meng, Xianghe; Liang, Fei; Tang, Jian; Kang, Kaijin; Yin, Wenlong; Zeng, Tixian; Kang, Bin; Lin, Zheshuai et al. (2019). "LiO 4 tetrahedra lock the alignment of π-conjugated layers to maximize optical anisotropy in metal hydroisocyanurates" (in en). Inorganic Chemistry Frontiers 6 (10): 2850–2854. doi:10.1039/C9QI01047E. ISSN 2052-1553. http://xlink.rsc.org/?DOI=C9QI01047E.
- ↑ 23.0 23.1 Hao, Xia; Lin, Chensheng; Luo, Min; Zhou, Yuqiao; Ye, Ning; Shangguan, Enbo (2023-05-22). "Cs 2 Mg(H 2 C 3 N 3 S 3 ) 4 ·8H 2 O: An Excellent Birefringent Material with Giant Optical Anisotropy in π-Conjugated Trithiocyanurate" (in en). Inorganic Chemistry 62 (20): 7611–7616. doi:10.1021/acs.inorgchem.3c00802. ISSN 0020-1669. PMID 37167341. https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00802.
- ↑ Zhang, Xinyuan; Du, Xiaoguang; Wang, Jinhui; Wang, Fangyan; Liang, Fei; Hu, Zhanggui; Lin, Zheshuai; Wu, Yicheng (30 November 2022). "K 3 C 6 N 7 O 3 ·2H 2 O: A Multifunctional Nonlinear Optical Cyamelurate Crystal with Colossal π-Conjugated Orbitals". ACS Applied Materials & Interfaces 14 (47): 53074–53080. doi:10.1021/acsami.2c15835. PMID 36379003.
- ↑ 25.0 25.1 Yao, Li-Jia; Hu, Chun-Li; Fang, Zhi; Mao, Jiang-Gao (November 2022). "Hg2P2S6: A layered mercury hexathiodiphosphate (IV) with large birefringence" (in en). Journal of Solid State Chemistry 315: 123433. doi:10.1016/j.jssc.2022.123433. Bibcode: 2022JSSCh.31523433Y. https://linkinghub.elsevier.com/retrieve/pii/S0022459622005588.
- ↑ Zhang, Xiaodong; Cao, Dongxu; Yang, Daqing; Wang, Ying; Wu, Kui; Lee, Ming-Hsien; Zhang, Bingbing (2022-04-04). "Finding the First Squarates Nonlinear Optical Crystal NaHC 4 O 4 ·H 2 O with Strong Second Harmonic Generation and Giant Birefringence" (in en). ACS Materials Letters 4 (4): 572–576. doi:10.1021/acsmaterialslett.2c00114. ISSN 2639-4979. https://pubs.acs.org/doi/10.1021/acsmaterialslett.2c00114.
- ↑ Huang, Yi; Zhang, Yong; Chu, Dongdong; Yang, Zhihua; Li, Guangmao; Pan, Shilie (2023-06-13). "HgB 2 S 4 : A d 10 Metal Thioborate with Giant Birefringence and Wide Band Gap" (in en). Chemistry of Materials 35 (11): 4556–4563. doi:10.1021/acs.chemmater.3c00937. ISSN 0897-4756. https://pubs.acs.org/doi/10.1021/acs.chemmater.3c00937.
- ↑ Li, Yanqiang; Wu, Qingchen; Lin, Zheshuai; Liu, Youchao; Zhou, Yang; Chen, Xin; Li, Minjuan; Hong, Maochun et al. (April 2022). "Maximizing the linear and nonlinear optical responses of alkaline tricyanomelaminate" (in en). Fundamental Research 3 (6): 974–978. doi:10.1016/j.fmre.2022.04.009.
- ↑ Sujith, C.P.; Joseph, Saji; Mathew, Thomas; Mathew, Vincent (August 2022). "Exploring the electronic and optical anisotropy of quasi-one-dimensional ternary chalcogenide CrSbSe3: a DFT study" (in en). Solid State Sciences 130: 106926. doi:10.1016/j.solidstatesciences.2022.106926. Bibcode: 2022SSSci.13006926S. https://linkinghub.elsevier.com/retrieve/pii/S1293255822001212.
- ↑ Guo, Zhengfeng; Gu, Honggang; Fang, Mingsheng; Song, Baokun; Wang, Wei; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao et al. (2021-05-03). "Complete Dielectric Tensor and Giant Optical Anisotropy in Quasi-One-Dimensional ZrTe 5" (in en). ACS Materials Letters 3 (5): 525–534. doi:10.1021/acsmaterialslett.1c00026. ISSN 2639-4979. https://pubs.acs.org/doi/10.1021/acsmaterialslett.1c00026.
- ↑ Sun, Mengran; Yao, Jiyong (2022). "Ba 2 HgTe 5 : a Hg-based telluride with giant birefringence induced by linear [HgTe 2 units"] (in en). Inorganic Chemistry Frontiers 9 (19): 5024–5031. doi:10.1039/D2QI01387H. ISSN 2052-1553. http://xlink.rsc.org/?DOI=D2QI01387H.
- ↑ Shi, Yong-Fang; Zhou, Sheng-Hua; Liu, Peng-Fei; Wu, Xin-Tao; Lin, Hua; Zhu, Qi-Long (2023). "A unique [Sb 6 O 2 S 13 12− finite chain in oxychalcogenide Ba 6 Sb 6 O 2 S 13 leading to ultra-low thermal conductivity and giant birefringence"] (in en). Inorganic Chemistry Frontiers 10 (15): 4425–4434. doi:10.1039/D3QI00850A. ISSN 2052-1553. http://xlink.rsc.org/?DOI=D3QI00850A.
- ↑ Guo, Jingyu; Tudi, Abudukadi; Han, Shujuan; Yang, Zhihua; Pan, Shilie (2021-11-15). "Sn 2 PO 4 I: An Excellent Birefringent Material with Giant Optical Anisotropy in Non π‐Conjugated Phosphate" (in en). Angewandte Chemie International Edition 60 (47): 24901–24904. doi:10.1002/anie.202111604. ISSN 1433-7851. PMID 34523205. https://onlinelibrary.wiley.com/doi/10.1002/anie.202111604.
- ↑ Segura, A.; Artús, L.; Cuscó, R.; Taniguchi, T.; Cassabois, G.; Gil, B. (6 February 2018). "Natural optical anisotropy of h-BN: Highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range". Physical Review Materials 2 (2): 024001. doi:10.1103/PhysRevMaterials.2.024001. Bibcode: 2018PhRvM...2b4001S.
- ↑ 35.0 35.1 Mathew, Thomas; Rahul K, Suseel; Joseph, Saji; Mathew, Vincent (May 2021). "Density functional study of structural, electronic and optical properties of quasi-one-dimensional compounds BaTiX 3 ( X = S , Se )" (in en). Superlattices and Microstructures 153: 106859. doi:10.1016/j.spmi.2021.106859. Bibcode: 2021SuMi..15306859M. https://linkinghub.elsevier.com/retrieve/pii/S0749603621000574.
- ↑ Niu, Shanyuan; Joe, Graham; Zhao, Huan; Zhou, Yucheng; Orvis, Thomas; Huyan, Huaixun; Salman, Jad; Mahalingam, Krishnamurthy et al. (July 2018). "Giant optical anisotropy in a quasi-one-dimensional crystal" (in en). Nature Photonics 12 (7): 392–396. doi:10.1038/s41566-018-0189-1. ISSN 1749-4885. Bibcode: 2018NaPho..12..392N. https://www.nature.com/articles/s41566-018-0189-1.
- ↑ John, Jimmy; Slassi, Amine; Sun, Jianing; Sun, Yifei; Bachelet, Romain; Pénuelas, José; Saint-Girons, Guillaume; Orobtchouk, Régis et al. (2022-08-23). "Tunable optical anisotropy in epitaxial phase-change VO 2 thin films" (in en). Nanophotonics 11 (17): 3913–3922. doi:10.1515/nanoph-2022-0153. ISSN 2192-8614. Bibcode: 2022Nanop..11..153J.
- ↑ Munkhbat, Battulga; Wróbel, Piotr; Antosiewicz, Tomasz J.; Shegai, Timur O. (2022-07-20). "Optical Constants of Several Multilayer Transition Metal Dichalcogenides Measured by Spectroscopic Ellipsometry in the 300–1700 nm Range: High Index, Anisotropy, and Hyperbolicity" (in en). ACS Photonics 9 (7): 2398–2407. doi:10.1021/acsphotonics.2c00433. ISSN 2330-4022. PMID 35880067.
- ↑ Deng, Nan; Long, Hua; Wang, Kun; Han, Xiaobo; Wang, Bing; Wang, Kai; Lu, Peixiang (2022-08-20). "Giant optical anisotropy of WS 2 flakes in the visible region characterized by Au substrate assisted near-field optical microscopy". Nanotechnology 33 (34): 345201. doi:10.1088/1361-6528/ac6c96. ISSN 0957-4484. PMID 35508119. Bibcode: 2022Nanot..33H5201D. https://iopscience.iop.org/article/10.1088/1361-6528/ac6c96.
- ↑ Mei, Hongyan; Ren, Guodong; Zhao, Boyang; Salman, Jad; Jung, Gwan-Yeong; Chen, Huandong; Thind, Arashdeep S.; Cavin, John et al. (2023-05-07). "Colossal Birefringence from Periodic Structural Modulations" (in EN). CLEO 2023 (2023), Paper STh4H.4 (Optica Publishing Group): STh4H.4. doi:10.1364/CLEO_SI.2023.STh4H.4. ISBN 978-1-957171-25-8. https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2023-STh4H.4.
Original source: https://en.wikipedia.org/wiki/Giant birefringence.
Read more |