Physics:Hilbert C*-module

From HandWiki
Short description: Mathematical objects that generalise the notion of Hilbert spaces

Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras (though Kaplansky observed that the assumption of a unit element was not "vital").[1] In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke[2] and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras.[3] Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory,[4] and provide the right framework to extend the notion of Morita equivalence to C*-algebras.[5] They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory,[6][7] and groupoid C*-algebras.

Definitions

Inner-product C*-modules

Let [math]\displaystyle{ A }[/math] be a C*-algebra (not assumed to be commutative or unital), its involution denoted by [math]\displaystyle{ {}^* }[/math]. An inner-product [math]\displaystyle{ A }[/math]-module (or pre-Hilbert [math]\displaystyle{ A }[/math]-module) is a complex linear space [math]\displaystyle{ E }[/math] equipped with a compatible right [math]\displaystyle{ A }[/math]-module structure, together with a map

[math]\displaystyle{ \langle \, \cdot \, , \, \cdot \,\rangle_A : E \times E \rightarrow A }[/math]

that satisfies the following properties:

  • For all [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math], [math]\displaystyle{ z }[/math] in [math]\displaystyle{ E }[/math], and [math]\displaystyle{ \alpha }[/math], [math]\displaystyle{ \beta }[/math] in [math]\displaystyle{ \mathbb{C} }[/math]:
[math]\displaystyle{ \langle x ,y \alpha + z \beta \rangle_A = \langle x, y \rangle_A \alpha + \langle x, z \rangle_A \beta }[/math]
(i.e. the inner product is [math]\displaystyle{ \mathbb{C} }[/math]-linear in its second argument).
  • For all [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math] in [math]\displaystyle{ E }[/math], and [math]\displaystyle{ a }[/math] in [math]\displaystyle{ A }[/math]:
[math]\displaystyle{ \langle x, y a \rangle_A = \langle x, y \rangle_A a }[/math]
  • For all [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math] in [math]\displaystyle{ E }[/math]:
[math]\displaystyle{ \langle x, y \rangle_A = \langle y, x \rangle_A^*, }[/math]
from which it follows that the inner product is conjugate linear in its first argument (i.e. it is a sesquilinear form).
  • For all [math]\displaystyle{ x }[/math] in [math]\displaystyle{ E }[/math]:
[math]\displaystyle{ \langle x, x \rangle_A \geq 0 }[/math]
in the sense of being a positive element of A, and
[math]\displaystyle{ \langle x, x \rangle_A = 0 \iff x = 0. }[/math]
(An element of a C*-algebra [math]\displaystyle{ A }[/math] is said to be positive if it is self-adjoint with non-negative spectrum.)[8][9]

Hilbert C*-modules

An analogue to the Cauchy–Schwarz inequality holds for an inner-product [math]\displaystyle{ A }[/math]-module [math]\displaystyle{ E }[/math]:[10]

[math]\displaystyle{ \langle x, y \rangle_A \langle y, x \rangle_A \leq \Vert \langle y, y \rangle_A \Vert \langle x, x \rangle_A }[/math]

for [math]\displaystyle{ x }[/math], [math]\displaystyle{ y }[/math] in [math]\displaystyle{ E }[/math].

On the pre-Hilbert module [math]\displaystyle{ E }[/math], define a norm by

[math]\displaystyle{ \Vert x \Vert = \Vert \langle x, x \rangle_A \Vert^\frac{1}{2}. }[/math]

The norm-completion of [math]\displaystyle{ E }[/math], still denoted by [math]\displaystyle{ E }[/math], is said to be a Hilbert [math]\displaystyle{ A }[/math]-module or a Hilbert C*-module over the C*-algebra [math]\displaystyle{ A }[/math]. The Cauchy–Schwarz inequality implies the inner product is jointly continuous in norm and can therefore be extended to the completion.

The action of [math]\displaystyle{ A }[/math] on [math]\displaystyle{ E }[/math] is continuous: for all [math]\displaystyle{ x }[/math] in [math]\displaystyle{ E }[/math]

[math]\displaystyle{ a_{\lambda} \rightarrow a \Rightarrow xa_{\lambda} \rightarrow xa. }[/math]

Similarly, if [math]\displaystyle{ (e_\lambda) }[/math] is an approximate unit for [math]\displaystyle{ A }[/math] (a net of self-adjoint elements of [math]\displaystyle{ A }[/math] for which [math]\displaystyle{ a e_\lambda }[/math] and [math]\displaystyle{ e_\lambda a }[/math] tend to [math]\displaystyle{ a }[/math] for each [math]\displaystyle{ a }[/math] in [math]\displaystyle{ A }[/math]), then for [math]\displaystyle{ x }[/math] in [math]\displaystyle{ E }[/math]

[math]\displaystyle{ xe_\lambda \rightarrow x. }[/math]

Whence it follows that [math]\displaystyle{ EA }[/math] is dense in [math]\displaystyle{ E }[/math], and [math]\displaystyle{ x 1_A = x }[/math] when [math]\displaystyle{ A }[/math] is unital.

Let

[math]\displaystyle{ \langle E, E \rangle_A = \operatorname{span} \{ \langle x, y \rangle_A \mid x, y \in E \}, }[/math]

then the closure of [math]\displaystyle{ \langle E, E \rangle_A }[/math] is a two-sided ideal in [math]\displaystyle{ A }[/math]. Two-sided ideals are C*-subalgebras and therefore possess approximate units. One can verify that [math]\displaystyle{ E \langle E, E \rangle_A }[/math] is dense in [math]\displaystyle{ E }[/math]. In the case when [math]\displaystyle{ \langle E , E \rangle_A }[/math] is dense in [math]\displaystyle{ A }[/math], [math]\displaystyle{ E }[/math] is said to be full. This does not generally hold.

Examples

Hilbert spaces

Since the complex numbers [math]\displaystyle{ \mathbb{C} }[/math] are a C*-algebra with an involution given by complex conjugation, a complex Hilbert space [math]\displaystyle{ \mathcal{H} }[/math] is a Hilbert [math]\displaystyle{ \mathbb{C} }[/math]-module under scalar multipliation by complex numbers and its inner product.

Vector bundles

If [math]\displaystyle{ X }[/math] is a locally compact Hausdorff space and [math]\displaystyle{ E }[/math] a vector bundle over [math]\displaystyle{ X }[/math] with projection [math]\displaystyle{ \pi \colon E \to X }[/math] a Hermitian metric [math]\displaystyle{ g }[/math], then the space of continuous sections of [math]\displaystyle{ E }[/math] is a Hilbert [math]\displaystyle{ C(X) }[/math]-module. Given sections [math]\displaystyle{ \sigma, \rho }[/math] of [math]\displaystyle{ E }[/math] and [math]\displaystyle{ f \in C(X) }[/math] the right action is defined by

[math]\displaystyle{ \sigma f (x) = \sigma(x) f(\pi(x)), }[/math]

and the inner product is given by

[math]\displaystyle{ \langle \sigma,\rho\rangle_{C(X)} (x):=g(\sigma(x),\rho(x)). }[/math]

The converse holds as well: Every countably generated Hilbert C*-module over a commutative unital C*-algebra [math]\displaystyle{ A = C(X) }[/math] is isomorphic to the space of sections vanishing at infinity of a continuous field of Hilbert spaces over [math]\displaystyle{ X }[/math]. [citation needed]

C*-algebras

Any C*-algebra [math]\displaystyle{ A }[/math] is a Hilbert [math]\displaystyle{ A }[/math]-module with the action given by right multiplication in [math]\displaystyle{ A }[/math] and the inner product [math]\displaystyle{ \langle a , b \rangle = a^*b }[/math]. By the C*-identity, the Hilbert module norm coincides with C*-norm on [math]\displaystyle{ A }[/math].

The (algebraic) direct sum of [math]\displaystyle{ n }[/math] copies of [math]\displaystyle{ A }[/math]

[math]\displaystyle{ A^n = \bigoplus_{i=1}^n A }[/math]

can be made into a Hilbert [math]\displaystyle{ A }[/math]-module by defining

[math]\displaystyle{ \langle (a_i), (b_i) \rangle_A = \sum_{i=1}^n a_i^* b_i. }[/math]

If [math]\displaystyle{ p }[/math] is a projection in the C*-algebra [math]\displaystyle{ M_n(A) }[/math], then [math]\displaystyle{ pA^n }[/math] is also a Hilbert [math]\displaystyle{ A }[/math]-module with the same inner product as the direct sum.

The standard Hilbert module

One may also consider the following subspace of elements in the countable direct product of [math]\displaystyle{ A }[/math]

[math]\displaystyle{ \ell_2(A)= \mathcal{H}_A = \Big\{ (a_i) | \sum_{i=1}^{\infty} a_i^{*}a_i\text{ converges in }A \Big\}. }[/math]

Endowed with the obvious inner product (analogous to that of [math]\displaystyle{ A^n }[/math]), the resulting Hilbert [math]\displaystyle{ A }[/math]-module is called the standard Hilbert module over [math]\displaystyle{ A }[/math].

The standard Hilbert module plays an important role in the proof of the Kasparov stabilization theorem which states that for any countably generated Hilbert [math]\displaystyle{ A }[/math]-module [math]\displaystyle{ E }[/math] there is an isometric isomorphism [math]\displaystyle{ E \oplus \ell^2(A) \cong \ell^2(A). }[/math] [11]

See also

Notes

  1. Kaplansky, I. (1953). "Modules over operator algebras". American Journal of Mathematics 75 (4): 839–853. doi:10.2307/2372552. 
  2. Paschke, W. L. (1973). "Inner product modules over B*-algebras". Transactions of the American Mathematical Society 182: 443–468. doi:10.2307/1996542. 
  3. Rieffel, M. A. (1974). "Induced representations of C*-algebras". Advances in Mathematics 13 (2): 176–257. doi:10.1016/0001-8708(74)90068-1. 
  4. Kasparov, G. G. (1980). "Hilbert C*-modules: Theorems of Stinespring and Voiculescu". Journal of Operator Theory (Theta Foundation) 4: 133–150. 
  5. Rieffel, M. A. (1982). "Morita equivalence for operator algebras". Proceedings of Symposia in Pure Mathematics (American Mathematical Society) 38: 176–257. 
  6. Baaj, S.; Skandalis, G. (1993). "Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres". Annales Scientifiques de l'École Normale Supérieure 26 (4): 425–488. doi:10.24033/asens.1677. 
  7. Woronowicz, S. L. (1991). "Unbounded elements affiliated with C*-algebras and non-compact quantum groups". Communications in Mathematical Physics 136 (2): 399–432. doi:10.1007/BF02100032. Bibcode1991CMaPh.136..399W. 
  8. Arveson, William (1976). An Invitation to C*-Algebras. Springer-Verlag. p. 35. 
  9. In the case when [math]\displaystyle{ A }[/math] is non-unital, the spectrum of an element is calculated in the C*-algebra generated by adjoining a unit to [math]\displaystyle{ A }[/math].
  10. This result in fact holds for semi-inner-product [math]\displaystyle{ A }[/math]-modules, which may have non-zero elements [math]\displaystyle{ A }[/math] such that [math]\displaystyle{ \langle x , x \rangle_A = 0 }[/math], as the proof does not rely on the nondegeneracy property.
  11. Kasparov, G. G. (1980). "Hilbert C*-modules: Theorems of Stinespring and Voiculescu". Journal of Operator Theory (ThetaFoundation) 4: 133–150. 

References

  • Lance, E. Christopher (1995). Hilbert C*-modules: A toolkit for operator algebraists. London Mathematical Society Lecture Note Series. Cambridge, England: Cambridge University Press. 

External links