Physics:Jeffery–Hamel flow
In fluid dynamics Jeffery–Hamel flow is a flow created by a converging or diverging channel with a source or sink of fluid volume at the point of intersection of the two plane walls. It is named after George Barker Jeffery(1915)[1] and Georg Hamel(1917),[2] but it has subsequently been studied by many major scientists such as von Kármán and Levi-Civita,[3] Walter Tollmien,[4] F. Noether,[5] W.R. Dean,[6] Rosenhead,[7] Landau,[8] G.K. Batchelor[9] etc. A complete set of solutions was described by Edward Fraenkel in 1962.[10]
Flow description
Consider two stationary plane walls with a constant volume flow rate [math]\displaystyle{ Q }[/math] is injected/sucked at the point of intersection of plane walls and let the angle subtended by two walls be [math]\displaystyle{ 2\alpha }[/math]. Take the cylindrical coordinate [math]\displaystyle{ (r,\theta,z) }[/math] system with [math]\displaystyle{ r=0 }[/math] representing point of intersection and [math]\displaystyle{ \theta=0 }[/math] the centerline and [math]\displaystyle{ (u,v,w) }[/math] are the corresponding velocity components. The resulting flow is two-dimensional if the plates are infinitely long in the axial [math]\displaystyle{ z }[/math] direction, or the plates are longer but finite, if one were neglect edge effects and for the same reason the flow can be assumed to be entirely radial i.e., [math]\displaystyle{ u=u(r,\theta),v=0,w=0 }[/math].
Then the continuity equation and the incompressible Navier–Stokes equations reduce to
- [math]\displaystyle{ \begin{align} \frac{\partial (ru)}{\partial r} & =0, \\[6pt] u\frac{\partial u}{\partial r} & = - \frac{1}{\rho}\frac{\partial p}{\partial r} + \nu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}- \frac{u}{r^2}\right] \\[6pt] 0 & = - \frac{1}{\rho r} \frac{\partial p}{\partial \theta} + \frac{2 \nu}{r^2} \frac{\partial u}{\partial \theta} \end{align} }[/math]
The boundary conditions are no-slip condition at both walls and the third condition is derived from the fact that the volume flux injected/sucked at the point of intersection is constant across a surface at any radius.
- [math]\displaystyle{ u(\pm \alpha) = 0, \quad Q= \int_{-\alpha}^\alpha u r \, d\theta }[/math]
Formulation
The first equation tells that [math]\displaystyle{ ru }[/math] is just function of [math]\displaystyle{ \theta }[/math], the function is defined as
- [math]\displaystyle{ F(\theta) = \frac{r u}{ \nu}. }[/math]
Different authors defines the function differently, for example, Landau[8] defines the function with a factor [math]\displaystyle{ 6 }[/math]. But following Whitham,[11] Rosenhead[12] the [math]\displaystyle{ \theta }[/math] momentum equation becomes
- [math]\displaystyle{ \frac{1}{\rho}\frac{\partial p}{\partial\theta} = \frac{2 \nu^2}{r^2} \frac{dF}{d\theta} }[/math]
Now letting
- [math]\displaystyle{ \frac{p-p_\infty}{\rho} = \frac{\nu^2}{r^2} P(\theta), }[/math]
the [math]\displaystyle{ r }[/math] and [math]\displaystyle{ \theta }[/math] momentum equations reduce to
- [math]\displaystyle{ P = -\frac{1}{2} (F^2+F'') }[/math]
- [math]\displaystyle{ P'= 2F', \quad \Rightarrow \quad P = 2F + C }[/math]
and substituting this into the previous equation(to eliminate pressure) results in
- [math]\displaystyle{ F'' + F^2 + 4F + 2C =0 }[/math]
Multiplying by [math]\displaystyle{ F' }[/math] and integrating once,
- [math]\displaystyle{ \frac{1}{2} F'^2+ \frac{1}{3} F^3 +2F^2 +2CF = D, }[/math]
- [math]\displaystyle{ \frac{1}{2} F'^2+ \frac{1}{3} (F^3 +6F^2 +6CF-3D) = 0 }[/math]
where [math]\displaystyle{ C,D }[/math] are constants to be determined from the boundary conditions. The above equation can be re-written conveniently with three other constants [math]\displaystyle{ a,b,c }[/math] as roots of a cubic polynomial, with only two constants being arbitrary, the third constant is always obtained from other two because sum of the roots is [math]\displaystyle{ a+b+c=-6 }[/math].
- [math]\displaystyle{ \frac{1}{2}F'^2+\frac{1}{3}(F-a)(F-b)(F-c)=0, }[/math]
- [math]\displaystyle{ \frac{1}{2}F'^2-\frac{1}{3}(a-F)(F-b)(F-c)=0. }[/math]
The boundary conditions reduce to
- [math]\displaystyle{ F(\pm \alpha) = 0, \quad \frac{Q}{\nu}= \int_{-\alpha}^\alpha F \, d\theta }[/math]
where [math]\displaystyle{ Re=Q/\nu }[/math] is the corresponding Reynolds number. The solution can be expressed in terms of elliptic functions. For convergent flow [math]\displaystyle{ Q\lt 0 }[/math], the solution exists for all [math]\displaystyle{ Re }[/math], but for the divergent flow [math]\displaystyle{ Q\gt 0 }[/math], the solution exists only for a particular range of [math]\displaystyle{ Re }[/math].
Dynamical interpretation[13]
The equation takes the same form as an undamped nonlinear oscillator(with cubic potential) one can pretend that [math]\displaystyle{ \theta }[/math] is time, [math]\displaystyle{ F }[/math] is displacement and [math]\displaystyle{ F' }[/math] is velocity of a particle with unit mass, then the equation represents the energy equation([math]\displaystyle{ K.E. + P.E.=0 }[/math], where [math]\displaystyle{ K.E. = \frac{1}{2} F'^2 }[/math] and [math]\displaystyle{ P.E. = V(F) }[/math] ) with zero total energy, then it is easy to see that the potential energy is
- [math]\displaystyle{ V(F)=-\frac{1}{3}(a-F)(F-b)(F-c) }[/math]
where [math]\displaystyle{ V\leq 0 }[/math] in motion. Since the particle starts at [math]\displaystyle{ F=0 }[/math] for [math]\displaystyle{ \theta=-\alpha }[/math] and ends at [math]\displaystyle{ F=0 }[/math] for [math]\displaystyle{ \theta=\alpha }[/math], there are two cases to be considered.
- First case [math]\displaystyle{ b,c }[/math] are complex conjugates and [math]\displaystyle{ a\gt 0 }[/math]. The particle starts at [math]\displaystyle{ F=0 }[/math] with finite positive velocity and attains [math]\displaystyle{ F=a }[/math] where its velocity is [math]\displaystyle{ F'=0 }[/math] and acceleration is [math]\displaystyle{ F''=-dV/dF\lt 0 }[/math] and returns to [math]\displaystyle{ F=0 }[/math] at final time. The particle motion [math]\displaystyle{ 0\lt F\lt a }[/math] represents pure outflow motion because [math]\displaystyle{ F\gt 0 }[/math] and also it is symmetric about [math]\displaystyle{ \theta=0 }[/math].
- Second case [math]\displaystyle{ c\lt b\lt 0\lt a }[/math], all constants are real. The motion from [math]\displaystyle{ F=0 }[/math] to [math]\displaystyle{ F=a }[/math] to [math]\displaystyle{ F=0 }[/math] represents a pure symmetric outflow as in the previous case. And the motion [math]\displaystyle{ F=0 }[/math] to [math]\displaystyle{ F=b }[/math] to [math]\displaystyle{ F=0 }[/math] with [math]\displaystyle{ F\lt 0 }[/math] for all time([math]\displaystyle{ -\alpha\leq\theta\leq\alpha }[/math]) represents a pure symmetric inflow. But also, the particle may oscillate between [math]\displaystyle{ b\leq F\leq a }[/math], representing both inflow and outflow regions and the flow is no longer need to symmetric about [math]\displaystyle{ \theta=0 }[/math].
The rich structure of this dynamical interpretation can be found in Rosenhead(1940).[7]
Pure outflow
For pure outflow, since [math]\displaystyle{ F=a }[/math] at [math]\displaystyle{ \theta=0 }[/math], integration of governing equation gives
- [math]\displaystyle{ \theta = \sqrt{\frac{3}{2}} \int_F^a \frac{dF}{\sqrt{(a-F)(F-b)(F-c))}} }[/math]
and the boundary conditions becomes
- [math]\displaystyle{ \alpha = \sqrt{\frac{3}{2}} \int_0^a \frac{dF}{\sqrt{(a-F)(F-b)(F-c))}}, \quad Re = 2\sqrt{\frac{3}{2}} \int_0^\alpha \frac{FdF}{\sqrt{(a-F)(F-b)(F-c))}}. }[/math]
The equations can be simplified by standard transformations given for example in Jeffreys.[14]
- First case [math]\displaystyle{ b,c }[/math] are complex conjugates and [math]\displaystyle{ a\gt 0 }[/math] leads to
- [math]\displaystyle{ F(\theta)=a-\frac{3M^2}{2}\frac{1-\operatorname{cn}(M\theta,\kappa)}{1+\operatorname{cn}(M\theta,\kappa)} }[/math]
- [math]\displaystyle{ M^2 = \frac{2}{3} \sqrt{(a-b)(a-c)}, \quad \kappa^2=\frac{1}{2}+\frac{a+2}{2M^2} }[/math]
where [math]\displaystyle{ \operatorname{sn}, \operatorname{cn} }[/math] are Jacobi elliptic functions.
- Second case [math]\displaystyle{ c\lt b\lt 0\lt a }[/math] leads to
- [math]\displaystyle{ F(\theta)=a-6k^2 m^2\operatorname{sn}^2(m\theta,k) }[/math]
- [math]\displaystyle{ m^2 = \frac{1}{6} (a-c), \quad k^2=\frac{a-b}{a-c}. }[/math]
Limiting form
The limiting condition is obtained by noting that pure outflow is impossible when [math]\displaystyle{ F'(\pm\alpha)=0 }[/math], which implies [math]\displaystyle{ b=0 }[/math] from the governing equation. Thus beyond this critical conditions, no solution exists. The critical angle [math]\displaystyle{ \alpha_c }[/math] is given by
- [math]\displaystyle{ \begin{align} \alpha_c &= \sqrt{\frac{3}{2}} \int_0^a \frac{dF}{\sqrt{F(a-F)(F+a+6))}},\\ &= \sqrt{\frac{3}{2a}} \int_0^1 \frac{dt}{\sqrt{t(1-t)\{1+(1+6/a)t\}}},\\ &= \frac{K(k^2)}{m^2} \end{align} }[/math]
where
- [math]\displaystyle{ m^2 = \frac{3+a}{3}, \quad k^2 = \frac{1}{2}\left(\frac{a}{3+a}\right) }[/math]
where [math]\displaystyle{ K(k^2) }[/math] is the complete elliptic integral of the first kind. For large values of [math]\displaystyle{ a }[/math], the critical angle becomes [math]\displaystyle{ \alpha_c =\sqrt{\frac{3}{a}}K\left(\frac{1}{2}\right)=\frac{3.211}{\sqrt{a}} }[/math].
The corresponding critical Reynolds number or volume flux is given by
- [math]\displaystyle{ \begin{align} Re_c = \frac{Q_c}{\nu} &= 2 \int_0^{\alpha_c} (a-6k^2 m^2\operatorname{sn}^2 m\theta) \, d\theta,\\ &= \frac{12k^2}{\sqrt{1-2k^2}} \int_0^K \operatorname{cn}^2 t dt,\\ &= \frac{12}{\sqrt{1-2k^2}}[ E(k^2) -(1-k^2)K(k^2)] \end{align} }[/math]
where [math]\displaystyle{ E(k^2) }[/math] is the complete elliptic integral of the second kind. For large values of [math]\displaystyle{ a, \left(\ k^2\sim \frac{1}{2}-\frac{3}{2a}\right) }[/math], the critical Reynolds number or volume flux becomes [math]\displaystyle{ Re_c=\frac{Q_c}{\nu} = 12 \sqrt{\frac{a}{3}} \left[E\left(\frac{1}{2}\right)-\frac{1}{2}K\left(\frac{1}{2}\right) \right]=2.934 \sqrt{a} }[/math].
Pure inflow
For pure inflow, the implicit solution is given by
- [math]\displaystyle{ \theta = \sqrt{\frac{3}{2}} \int_b^F \frac{dF}{\sqrt{(a-F)(F-b)(F-c))}} }[/math]
and the boundary conditions becomes
- [math]\displaystyle{ \alpha = \sqrt{\frac{3}{2}} \int_b^0 \frac{dF}{\sqrt{(a-F)(F-b)(F-c))}}, \quad Re = 2\sqrt{\frac{3}{2}} \int_\alpha^0 \frac{FdF}{\sqrt{(a-F)(F-b)(F-c))}}. }[/math]
Pure inflow is possible only when all constants are real [math]\displaystyle{ c\lt b\lt 0\lt a }[/math] and the solution is given by
- [math]\displaystyle{ F(\theta)=a-6k^2 m^2\operatorname{sn}^2(K-m\theta,k)=b+6k^2 m^2 \operatorname{cn}^2(K-m\theta,k) }[/math]
- [math]\displaystyle{ m^2 = \frac{1}{6} (a-c), \quad k^2=\frac{a-b}{a-c} }[/math]
where [math]\displaystyle{ K(k^2) }[/math] is the complete elliptic integral of the first kind.
Limiting form
As Reynolds number increases ([math]\displaystyle{ -b }[/math] becomes larger), the flow tends to become uniform(thus approaching potential flow solution), except for boundary layers near the walls. Since [math]\displaystyle{ m }[/math] is large and [math]\displaystyle{ \alpha }[/math] is given, it is clear from the solution that [math]\displaystyle{ K }[/math] must be large, therefore [math]\displaystyle{ k\sim 1 }[/math]. But when [math]\displaystyle{ k\approx 1 }[/math], [math]\displaystyle{ \operatorname{sn} t\approx \tanh t, \ c\approx b, \ a\approx -2b }[/math], the solution becomes
- [math]\displaystyle{ F(\theta) = b\left\{3\tanh^2 \left[\sqrt{-\frac{b}{2}}(\alpha-\theta)+\tanh^{-1}\sqrt{\frac{2}{3}}\right]-2\right\}. }[/math]
It is clear that [math]\displaystyle{ F\approx b }[/math] everywhere except in the boundary layer of thickness [math]\displaystyle{ O\left(\sqrt{-\frac{b}{2}}\right) }[/math]. The volume flux is [math]\displaystyle{ Q/\nu\approx 2\alpha b }[/math] so that [math]\displaystyle{ |Re|=O(|b|) }[/math] and the boundary layers have classical thickness [math]\displaystyle{ O\left(|Re|^{1/2}\right) }[/math].
References
- ↑ Jeffery, G. B. "L. The two-dimensional steady motion of a viscous fluid." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29.172 (1915): 455–465.
- ↑ Hamel, Georg. "Spiralförmige Bewegungen zäher Flüssigkeiten." Jahresbericht der Deutschen Mathematiker-Vereinigung 25 (1917): 34–60.
- ↑ von Kármán, and Levi-Civita. "Vorträge aus dem Gebiete der Hydro-und Aerodynamik." (1922)
- ↑ Walter Tollmien "Handbuch der Experimentalphysik, Vol. 4." (1931): 257.
- ↑ Fritz Noether "Handbuch der physikalischen und technischen Mechanik, Vol. 5." Leipzig, JA Barch (1931): 733.
- ↑ Dean, W. R. "LXXII. Note on the divergent flow of fluid." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 18.121 (1934): 759–777.
- ↑ 7.0 7.1 Louis Rosenhead "The steady two-dimensional radial flow of viscous fluid between two inclined plane walls." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 175. No. 963. The Royal Society, 1940.
- ↑ 8.0 8.1 Lev Landau, and E. M. Lifshitz. "Fluid Mechanics Pergamon." New York 61 (1959).
- ↑ G.K. Batchelor. An introduction to fluid dynamics. Cambridge university press, 2000.
- ↑ Fraenkel, L. E. (1962). Laminar flow in symmetrical channels with slightly curved walls, I. On the Jeffery-Hamel solutions for flow between plane walls. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 267(1328), 119-138.
- ↑ Whitham, G. B. "Chapter III in Laminar Boundary Layers." (1963): 122.
- ↑ Rosenhead, Louis, ed. Laminar boundary layers. Clarendon Press, 1963.
- ↑ Drazin, Philip G., and Norman Riley. The Navier–Stokes equations: a classification of flows and exact solutions. No. 334. Cambridge University Press, 2006.
- ↑ Jeffreys, Harold, Bertha Swirles, and Philip M. Morse. "Methods of mathematical physics." (1956): 32–34.
Original source: https://en.wikipedia.org/wiki/Jeffery–Hamel flow.
Read more |