Physics:Kovacs effect

From HandWiki

In statistical mechanics and condensed matter physics, the Kovacs effect is a kind of memory effect in glassy systems below the glass-transition temperature. A.J. Kovacs observed that a system’s state out of equilibrium is defined not only by its macro thermodynamical variables, but also by the inner parameters of the system. In the original effect, in response to a temperature change, under constant pressure, the isobaric volume and free energy of the system experienced a recovery characterized by non-monotonic departure from equilibrium, whereas all other thermodynamical variables were in their equilibrium values. It is considered a memory effect since the relaxation dynamics of the system depend on its thermal and mechanical history. The effect was discovered by Kovacs in the 1960s in polyvinyl acetate.[1][2] Since then, the Kovacs effect has been established as a very general phenomenon that comes about in a large variety of systems, model glasses,[3] [4] [5] [6] [7] [8] [9] [10] tapped dense granular matter, [11] spin-glasses,[12] molecular liquids,[13][14] granular gases,[15] active matter,[16] disordered mechanical systems,[17] protein molecules,[18] and more.

The effect in Kovacs’ experiments

Kovacs’ experimental procedure on polyvinyl acetate consisted of two main stages. In the first step, the sample is instantaneously quenched from a high initial temperature [math]\displaystyle{ T_0 }[/math] to a low reference temperature [math]\displaystyle{ T_r }[/math], under constant pressure. The time-dependent volume of the system in [math]\displaystyle{ T_r }[/math] , [math]\displaystyle{ V(t)|_{T_r} }[/math] , is recorded, until the time [math]\displaystyle{ t_{eq} }[/math] when the system is considered to be at equilibrium. The volume at [math]\displaystyle{ t_{eq} }[/math] is defined as the equilibrium volume of the system at temperature [math]\displaystyle{ T_r }[/math]:

[math]\displaystyle{ V(t_{eq})|_{T_r} \equiv V_{eq}(T_r) }[/math]

In the second step, the sample is quenched again from [math]\displaystyle{ T_0 }[/math] to a temperature [math]\displaystyle{ T_1 }[/math] that is lower than [math]\displaystyle{ T_r }[/math], so that [math]\displaystyle{ T_0\gt T_r\gt T_1 }[/math]. But now, the system is held at temperature [math]\displaystyle{ T_1 }[/math] only until the time [math]\displaystyle{ t_1 }[/math] when its volume reaches the equilibrium value of [math]\displaystyle{ T_r }[/math], meaning [math]\displaystyle{ V(t_1)|_{T_1}=V_{eq}(T_r) }[/math].

Then, the temperature is raised instantaneously to [math]\displaystyle{ T_r }[/math], so both the temperature and the volume agree with the same equilibrium state. Naively, one expects that nothing should happen when the system is at [math]\displaystyle{ V=V_{eq}(T_r) }[/math] and [math]\displaystyle{ T=T_r }[/math]. But instead, the volume of the system first increases and then relaxes back to [math]\displaystyle{ V_{eq}(T_r) }[/math], while the temperature is held constant at [math]\displaystyle{ T_r }[/math]. This non-monotonic behavior in time of the volume [math]\displaystyle{ V(t) }[/math] after the jump in the temperature can be simply captured by:

[math]\displaystyle{ V(t)=V_{eq}(T_r)+\Delta V }[/math]

where [math]\displaystyle{ \Delta V \geq 0 }[/math] , and [math]\displaystyle{ \Delta V(t=t_1)=0, \Delta V(t\rightarrow\infty)=0 }[/math]. [math]\displaystyle{ \Delta V }[/math] is also referred as the “Kovacs hump”. Kovacs also found that the hump displayed some general features: [math]\displaystyle{ \Delta V \geq 0 }[/math] with only one maximum of height [math]\displaystyle{ \Delta V_M }[/math] at a certain time [math]\displaystyle{ t_M }[/math]; as the temperature [math]\displaystyle{ T_1 }[/math] is lowered, the hump becomes larger, [math]\displaystyle{ \Delta V_M }[/math] increases, and moves to shorter times, [math]\displaystyle{ t_M }[/math] decreases.

In the subsequent studies of the Kovacs hump in different systems, a similar protocol with two jumps in the temperature has been employed. The associated time evolution of a relevant physical quantity [math]\displaystyle{ P }[/math], often the energy, is monitored and displays the Kovacs hump. The physical relevance of this behavior is the same as in the Kovacs experiment: it shows that [math]\displaystyle{ P }[/math] does not completely characterize the dynamical state of the system, and the necessity of incorporating additional variables to have the whole picture.

The Kovacs hump described above has been rationalized by employing linear response theory for molecular systems, in which the initial and final states are equilibrium ones. Therein, the "direct" relaxation function (with only one temperature jump, instead of two) is a superposition of positive exponentially decaying modes, as a consequence of the fluctuation-dissipation theorem. Linear response makes it possible to write the Kovacs hump in terms of the direct relaxation function.[19] Specifically, the positivity of the all the modes in the direct relaxation function ensures the "normal" character of the hump, i.e. the fact that [math]\displaystyle{ \Delta P \geq 0 }[/math].

Recently, analogous experiments have been proposed for "athermal" systems, like granular systems or active matter, with the proper reinterpretation of the variables. For instance, in granular gases the relevant physical property [math]\displaystyle{ P }[/math] is still the energy—although one usually employs the terminology "granular temperature" for the kinetic energy in this context—but it is the intensity of the external driving [math]\displaystyle{ \xi }[/math] that plays the role of the temperature. The emergence of Kovacs-like humps highlights the relevance of non-Gaussianities to describe the physical state of granular gases.

"Anomalous" Kovacs humps have been reported in athermal systems, i.e. [math]\displaystyle{ \Delta P\leq 0 }[/math], i.e. a minimum is observed instead of a maximum.[15][16] Although the linear response connection between the Kovacs hump and the direct relaxation function can be extended to athermal systems,[16][20] not all the modes are positive definite—the standard version of the fluctuation-dissipation theorem does not apply. This is the key that facilitates the emergence of anomalous behavior.[21]

References

  1. Kovacs, A. J.; Stratton, Robert A.; Ferry, John D. (1963). "Dynamic Mechanical Properties of Polyvinyl Acetate in Shear in the Glass Transition Temperature Range". The Journal of Physical Chemistry 67 (1): 152–161. doi:10.1021/j100795a037. ISSN 0022-3654. http://dx.doi.org/10.1021/j100795a037. 
  2. Kovacs, A. J.; Aklonis, J. J.; Hutchinson, J. M.; Ramos, A. R. (1979). "Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory". Journal of Polymer Science: Polymer Physics Edition 17 (7): 1097–1162. doi:10.1002/pol.1979.180170701. Bibcode1979JPoSB..17.1097K. http://doi.wiley.com/10.1002/pol.1979.180170701. 
  3. Bertin, E M; Bouchaud, J-P; Drouffe, J-M; Godrèche, C (2003). "The Kovacs effect in model glasses". Journal of Physics A 36 (43): 10701–10719. doi:10.1088/0305-4470/36/43/003. ISSN 0305-4470. Bibcode2003JPhA...3610701B. http://dx.doi.org/10.1088/0305-4470/36/43/003. 
  4. Buhot, Arnaud (2003). "Kovacs effect and fluctuation–dissipation relations in 1D kinetically constrained models". Journal of Physics A 36 (50): 12367–12377. doi:10.1088/0305-4470/36/50/002. Bibcode2003JPhA...3612367B. 
  5. Arenzon, J. J.; Sellitto, M. (2004). "Kovacs effect in facilitated spin models of strong and fragile glasses". The European Physical Journal B 42 (4): 543–548. doi:10.1140/epjb/e2005-00012-0. Bibcode2004EPJB...42..543A. 
  6. Aquino, Gerardo; Leuzzi, Luca; Nieuwenhuizen, Theo M. (2006). "Kovacs effect in a model for a fragile glass". Physical Review B 73 (9): 094205. doi:10.1103/PhysRevB.73.094205. Bibcode2006PhRvB..73i4205A. 
  7. Diezemann, Gregor; Heuer, Andreas (2011). "Memory effects in the relaxation of the Gaussian trap model". Physical Review E 83 (3): 031505. doi:10.1103/PhysRevE.83.031505. PMID 21517505. Bibcode2011PhRvE..83c1505D. 
  8. Ruiz-García, M.; Prados, A. (2014). "Kovacs effect in the one-dimensional Ising model: A linear response analysis". Physical Review E 89 (1): 012140. doi:10.1103/PhysRevE.89.012140. ISSN 1539-3755. PMID 24580205. Bibcode2014PhRvE..89a2140R. http://link.aps.org/doi/10.1103/PhysRevE.89.012140. 
  9. Lulli, Matteo; Lee, Chun-Shing; Deng, Hai-Yao; Yip, Cho-Tung; Lam, Chi-Hang (2020). "Spatial Heterogeneities in Structural Temperature Cause Kovacs' Expansion Gap Paradox in Aging of Glasses". Physical Review Letters 124 (9): 095501. doi:10.1103/PhysRevLett.124.095501. ISSN 0031-9007. PMID 32202859. Bibcode2020PhRvL.124i5501L. https://link.aps.org/doi/10.1103/PhysRevLett.124.095501. 
  10. Peyrard, Michel; Garden, Jean-Luc (2020). "Memory effects in glasses: Insights into the thermodynamics of out-of-equilibrium systems revealed by a simple model of the Kovacs effect". Physical Review E 102 (5): 052122. doi:10.1103/PhysRevE.102.052122. ISSN 2470-0045. PMID 33327132. Bibcode2020PhRvE.102e2122P. https://link.aps.org/doi/10.1103/PhysRevE.102.052122. 
  11. Josserand, Christophe; Tkachenko, Alexei V.; Mueth, Daniel M.; Jaeger, Heinrich M. (2000). "Memory Effects in Granular Materials". Physical Review Letters 85 (17): 3632–3635. doi:10.1103/physrevlett.85.3632. ISSN 0031-9007. PMID 11030968. Bibcode2000PhRvL..85.3632J. http://dx.doi.org/10.1103/physrevlett.85.3632. 
  12. Berthier, Ludovic; Bouchaud, Jean-Philippe (2002). "Geometrical aspects of aging and rejuvenation in the Ising spin glass: A numerical study". Physical Review B 66 (5): 054404. doi:10.1103/physrevb.66.054404. ISSN 0163-1829. Bibcode2002PhRvB..66e4404B. http://dx.doi.org/10.1103/physrevb.66.054404. 
  13. Mossa, Stefano; Sciortino, Francesco (2004). "Crossover (or Kovacs) Effect in an Aging Molecular Liquid". Physical Review Letters 92 (4): 045504. doi:10.1103/physrevlett.92.045504. ISSN 0031-9007. PMID 14995386. Bibcode2004PhRvL..92d5504M. http://dx.doi.org/10.1103/physrevlett.92.045504. 
  14. Riechers, Birte; Roed, Lisa A.; Mehri, Saeed; Ingebrigtsen, Trond S.; Hecksher, Tina; Dyre, Jeppe C.; Niss, Kristine (2022-03-18). "Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time". Science Advances 8 (11): eabl9809. doi:10.1126/sciadv.abl9809. ISSN 2375-2548. PMID 35294250. Bibcode2022SciA....8L9809R. 
  15. 15.0 15.1 Prados, A.; Trizac, E. (2014). "Kovacs-Like Memory Effect in Driven Granular Gases". Physical Review Letters 112 (19): 198001. doi:10.1103/physrevlett.112.198001. ISSN 0031-9007. PMID 24877966. Bibcode2014PhRvL.112s8001P. http://dx.doi.org/10.1103/physrevlett.112.198001. 
  16. 16.0 16.1 16.2 Kürsten, Rüdiger; Sushkov, Vladimir; Ihle, Thomas (2017). "Giant Kovacs-Like Memory Effect for Active Particles". Physical Review Letters 119 (18): 188001. doi:10.1103/PhysRevLett.119.188001. PMID 29219569. Bibcode2017PhRvL.119r8001K. 
  17. Lahini, Yoav; Gottesman, Omer; Amir, Ariel; Rubinstein, Shmuel M. (2017). "Nonmonotonic Aging and Memory Retention in Disordered Mechanical Systems". Physical Review Letters 118 (8): 085501. doi:10.1103/PhysRevLett.118.085501. PMID 28282188. Bibcode2017PhRvL.118h5501L. http://link.aps.org/doi/10.1103/PhysRevLett.118.085501. Retrieved 2017-02-25. 
  18. Morgan, Ian L.; Avinery, Ram; Rahamim, Gil; Beck, Roy; Saleh, Omar A. (2020). "Glassy Dynamics and Memory Effects in an Intrinsically Disordered Protein Construct". Physical Review Letters 125 (5): 058001. doi:10.1103/physrevlett.125.058001. ISSN 0031-9007. PMID 32794838. Bibcode2020PhRvL.125e8001M. http://dx.doi.org/10.1103/physrevlett.125.058001. 
  19. Prados, A.; Brey, J.J. (2010). "The Kovacs effect: a master equation analysis". Journal of Statistical Mechanics: Theory and Experiment 2010 (2): P02009. doi:10.1088/1742-5468/2010/02/P02009. Bibcode2010JSMTE..02..009P. 
  20. Plata, C. A.; Prados, A. (2017). "Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis". Entropy 19 (10): 539. doi:10.3390/e19100539. Bibcode2017Entrp..19..539P. 
  21. Sánchez-Rey, B.; Prados, A. (2021). "Linear response in the uniformly heated granular gas". Physical Review E 104 (2): 024903. doi:10.1103/PhysRevE.104.024903. ISSN 2470-0045. PMID 34525635. Bibcode2021PhRvE.104b4903S. https://link.aps.org/doi/10.1103/PhysRevE.104.024903.