Physics:Kramers' law

From HandWiki
Short description: Formula about X-ray emission spectra


Kramers' law is a formula for the spectral distribution of X-rays produced by an electron hitting a solid target. The formula concerns only bremsstrahlung radiation, not the element specific characteristic radiation. It is named after its discoverer, the Dutch physicist Hendrik Anthony Kramers.[1]

The formula for Kramers' law is usually given as the distribution of intensity (photon count) [math]\displaystyle{ I }[/math] against the wavelength [math]\displaystyle{ \lambda }[/math] of the emitted radiation:[2] [math]\displaystyle{ I(\lambda)d\lambda = K \left( \frac{\lambda}{\lambda_\text{min}} - 1 \right) \frac{1}{\lambda^2} d\lambda }[/math]

The constant K is proportional to the atomic number of the target element, and [math]\displaystyle{ \lambda_\text{min} }[/math] is the minimum wavelength given by the Duane–Hunt law. The maximum intensity is [math]\displaystyle{ \frac{K}{4\lambda_\text{min}^2} }[/math] at [math]\displaystyle{ 2 \lambda_\text{min} }[/math].

The intensity described above is a particle flux and not an energy flux as can be seen by the fact that the integral over values from [math]\displaystyle{ \lambda_{min} }[/math] to [math]\displaystyle{ \infty }[/math] is infinite. However, the integral of the energy flux is finite.

To obtain a simple expression for the energy flux, first change variables from [math]\displaystyle{ \lambda }[/math] (the wavelength) to [math]\displaystyle{ \omega }[/math] (the angular frequency) using [math]\displaystyle{ \lambda = 2\pi c/\omega }[/math] and also using [math]\displaystyle{ \tilde I(\omega) = I(\lambda) \frac{-d\lambda}{d\omega} }[/math]. Now [math]\displaystyle{ \tilde I(\omega) }[/math] is that quantity which is integrated over [math]\displaystyle{ \omega }[/math] from 0 to [math]\displaystyle{ \omega_\text{max} }[/math] to get the total number (still infinite) of photons, where [math]\displaystyle{ \omega_\text{max} = 2\pi c / \lambda_\text{min} }[/math]: [math]\displaystyle{ \tilde I(\omega) = \frac{K}{2\pi c} \left( \frac{\omega_\text{max}}{\omega} - 1\right) }[/math]

The energy flux, which we will call [math]\displaystyle{ \psi(\omega) }[/math] (but which may also be referred to as the "intensity" in conflict with the above name of [math]\displaystyle{ I(\lambda) }[/math]) is obtained by multiplying the above [math]\displaystyle{ \tilde I }[/math] by the energy [math]\displaystyle{ \hbar\omega }[/math]: [math]\displaystyle{ \psi(\omega) = \frac{K}{2\pi c}(\hbar\omega_\text{max}-\hbar\omega) }[/math] for [math]\displaystyle{ \omega \le \omega_\text{max} }[/math] [math]\displaystyle{ \psi(\omega)=0 }[/math] for [math]\displaystyle{ \omega\ge \omega_\text{max} }[/math].

It is a linear function that is zero at the maximum energy [math]\displaystyle{ \hbar\omega_\text{max} }[/math].

References

  1. Kramers, H.A. (1923). "On the theory of X-ray absorption and of the continuous X-ray spectrum". Phil. Mag. 46: 836. doi:10.1080/14786442308565244. 
  2. Laguitton, Daniel; William Parrish (1977). "Experimental Spectral Distribution versus Kramers' Law for Quantitative X-ray Fluorescence by the Fundamental Parameters Method". X-Ray Spectrometry 6 (4): 201. doi:10.1002/xrs.1300060409. Bibcode1977XRS.....6..201L.