Physics:Newton and Binet-Obidi Equation in the Theory of Entropicity(ToE)
Template:HandWiki Template:Physics Template:Infobox theory
Introduction
In the Theory of Entropicity(ToE),[1] as first formulated and developed by John Onimisi Obidi,[2] motion is not driven by fundamental forces but emerges from gradients in a scalar entropy field \( S(x^\mu) \). This article presents the entropic analogs of Newtonian trajectory equations, including orbital motion, relativistic paths, and irreversible corrections due to the Entropic Time Limit (ETL).
Nonrelativistic Entropic Motion
Entropic Lagrangian
A particle of mass \( m \) moving in an entropic field \( S(x,t) \) has the Lagrangian:
- [math]\displaystyle{ L = \tfrac{1}{2} m \dot{\boldsymbol{x}}^{\,2} - m\,S(\boldsymbol{x},t) }[/math]
Equation of Motion
Euler–Lagrange yields:
- [math]\displaystyle{ m\,\ddot{\boldsymbol{x}}(t) = -\,m\,\nabla S(\boldsymbol{x},t) }[/math]
Hamiltonian Form
- [math]\displaystyle{ H = \tfrac{1}{2m}\,\boldsymbol{p}^{2} + m\,S(\boldsymbol{x},t) }[/math]
- [math]\displaystyle{ \dot{\boldsymbol{x}} = \frac{\partial H}{\partial \boldsymbol{p}},\quad \dot{\boldsymbol{p}} = -\frac{\partial H}{\partial \boldsymbol{x}} }[/math]
Constant Entropic Gradient
If \( \nabla S = -\boldsymbol{a}_E = \text{const} \), then:
- [math]\displaystyle{ \boldsymbol{x}(t) = \boldsymbol{x}_0 + \boldsymbol{v}_0 t + \tfrac{1}{2} \boldsymbol{a}_E t^2 }[/math]
- [math]\displaystyle{ \boldsymbol{v}(t) = \boldsymbol{v}_0 + \boldsymbol{a}_E t }[/math]
Central Entropic Field and Orbital Motion
Let \( S = S(r) \), with \( r = |\boldsymbol{x}| \). The entropic force is:
- [math]\displaystyle{ \boldsymbol{F}_{\text{ent}} = -m\,S'(r)\,\hat{\boldsymbol{r}} }[/math]
Angular Momentum
- [math]\displaystyle{ h = r^2 \dot{\phi} = \text{constant} }[/math]
Binet–Obidi Equation
In terms of \( u(\phi) = 1/r \), the famous Binet-Obidi Equation in the Theory of Entropicity(ToE) is given as:
- [math]\displaystyle{ \frac{d^2 u}{d\phi^2} + u = \frac{S'(r)}{h^2 u^2}\Big|_{r=1/u} }[/math]
Example: Inverse-Radius Field
If \( S(r) = -\frac{G M}{r} \), then:
- [math]\displaystyle{ \frac{d^2 u}{d\phi^2} + u = \frac{G M}{h^2} }[/math]
Solution:
- [math]\displaystyle{ r(\phi) = \frac{p}{1 + e \cos(\phi - \phi_0)},\quad p = \frac{h^2}{G M} }[/math]
Relativistic Entropic Trajectories
Worldline Action
- [math]\displaystyle{ S_{\text{p}} = -m \int d\tau - m \int S(x(\tau))\,d\tau }[/math]
Equation of Motion
- [math]\displaystyle{ m\,\frac{D u^\mu}{D\tau} = -m\,\left(\delta^\mu_\nu + u^\mu u_\nu\right)\nabla^\nu S }[/math]
Irreversibility and ETL Corrections
ToE introduces a minimal time scale \( \tau_E \) for entropy exchange:
- [math]\displaystyle{ \tau_E = \sqrt{\frac{\lambda}{k_B^2 \langle (\nabla S)^2 \rangle}} }[/math]
Rayleigh Dissipation Model
Modified equation:
- [math]\displaystyle{ m\,\ddot{\boldsymbol{x}} = -m\,\nabla S - \frac{m}{\tau_E}\,\dot{\boldsymbol{x}} }[/math]
Closed Form for Constant Gradient
- [math]\displaystyle{ v(t) = (v_0 - a_E \tau_E) e^{-t/\tau_E} + a_E \tau_E }[/math]
- [math]\displaystyle{ x(t) = x_0 + (v_0 - a_E \tau_E)\tau_E(1 - e^{-t/\tau_E}) + a_E \tau_E t }[/math]
Non-Markovian Memory Kernel
Generalized equation:
- [math]\displaystyle{ m\,\ddot{\boldsymbol{x}}(t) = -m\,\nabla S(\boldsymbol{x},t) - \int_0^t \Gamma(t - t')\,\dot{\boldsymbol{x}}(t')\,dt' }[/math]
Example kernel:
- [math]\displaystyle{ \Gamma(\Delta t) = \frac{m}{\tau_E^2} e^{-\Delta t/\tau_E} \Theta(\Delta t) }[/math]
Summary Table
Concept | Expression | Role |
---|---|---|
Entropic force | [math]\displaystyle{ \boldsymbol{F}_{\text{ent}} = -m\,\nabla S }[/math] | Drives motion |
Equation of motion | [math]\displaystyle{ m\,\ddot{\boldsymbol{x}} = -m\,\nabla S }[/math] | Nonrelativistic dynamics |
Orbital equation | [math]\displaystyle{ \frac{d^2 u}{d\phi^2} + u = \cdots }[/math] | Central field trajectories |
Relativistic motion | [math]\displaystyle{ \frac{D u^\mu}{D\tau} = -(\perp^\mu{}_\nu)\nabla^\nu S }[/math] | Worldline evolution |
ETL correction | [math]\displaystyle{ \ddot{\boldsymbol{x}} + \frac{1}{\tau_E} \dot{\boldsymbol{x}} }[/math] | Irreversibility |
Memory kernel | [math]\displaystyle{ \int \Gamma(t - t') \dot{\boldsymbol{x}}(t') dt' }[/math] | Nonlocal entropic delay |
See Also
- Physics:Theory of Entropicity
- Physics:Entropic gravity
- Physics:Information geometry
- Physics:General relativity
- Physics:Rayleigh dissipation
- Physics:Binet equation
References
- ↑ Obidi, John Onimisi. A Critical Review of the Theory of Entropicity (ToE) on Original Contributions, Conceptual Innovations, and Pathways towards Enhanced Mathematical Rigor: An Addendum to the Discovery of New Laws of Conservation and Uncertainty. Cambridge University.(2025-06-30). https://doi.org/10.33774/coe-2025-hmk6n
- ↑ Obidi, John Onimisi. Einstein and Bohr Finally Reconciled on Quantum Theory: The Theory of Entropicity (ToE) as the Unifying Resolution to the Problem of Quantum Measurement and Wave Function Collapse. Cambridge University. (14 April 2025). https://doi.org/10.33774/coe-2025-vrfrx
- ↑ https://encyclopedia.pub/entry/58723
- ↑ https://handwiki.org/wiki/Physics:Implications_of_the_Obidi_Action_and_the_Theory_of_Entropicity_%28ToE%29
- ↑ https://osf.io/shcrn/wiki/
- ↑ https://www.researchgate.net/publication/390524626
- ↑ https://handwiki.org/wiki/Physics:A_Concise_Introduction_to_the_Evolving_Theory_of_Entropicity_%28ToE%29