Physics:Quantum speed limit

From HandWiki
Short description: Limitation on the minimum time for a quantum system to evolve between two distinguishable states

In quantum mechanics, a quantum speed limit (QSL) is a limitation on the minimum time for a quantum system to evolve between two distinguishable states.[1] QSL are closely related to time-energy uncertainty relations. In 1945, Leonid Mandelstam and Igor Tamm derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion.[2] Over half a century later, Norman Margolus and Lev Levitin showed that the speed of evolution cannot exceed the mean energy,[3] a result known as the Margolus–Levitin theorem. Realistic physical systems in contact with an environment are known as open quantum systems and their evolution is also subject to QSL.[4][5] Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes,[6] which was verified in a cavity QED experiment.[7]

QSL have been used to explore the limits of computation[8][9] and complexity. In 2017, QSLs were studied in a quantum oscillator at high temperature. [10] In 2018, it was shown that QSL are not restricted to the quantum domain and that similar bounds hold in classical systems. [11][12] In 2021, both the Mandelstam-Tamm and the Margolus-Levitin QSL bounds were concurrently tested in a single experiment[13] which indicated there are "two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times."

Mandelstam-Tamm limit

Let [math]\displaystyle{ ds^2 }[/math] be the Bures metric, defined by[math]\displaystyle{ ds(\rho, \rho+d\rho)^2 = \frac 12 \sum_{jk} \frac{|\langle j|d\rho |k\rangle|^2}{p_j + p_k} }[/math]If a quantum system is evolving under a time-dependent Hamiltonian [math]\displaystyle{ H }[/math], then its velocity according to Bures metric is upper bounded by[math]\displaystyle{ ds \leq \frac{\sigma_H(t)}{\hbar}dt }[/math]where [math]\displaystyle{ \sigma_H(t) }[/math] is the uncertainty in energy at time [math]\displaystyle{ t }[/math].

Two corollaries:

  • The time taken to evolve from [math]\displaystyle{ \rho }[/math] to [math]\displaystyle{ \rho' }[/math] is [math]\displaystyle{ \tau \geq \frac{\hbar}{\bar\sigma_H}dist(\rho, \rho') }[/math], where is [math]\displaystyle{ \bar \sigma_H := \frac{1}{\tau}\int_0^\tau \sigma_H(t)dt }[/math] the time-averaged uncertainty in energy.
  • The time taken to evolve from one pure state to another pure state orthogonal to it is [math]\displaystyle{ \tau \geq \frac\pi 2 \frac{\hbar}{\bar\sigma_H} }[/math]. [14]

Applications

Computation machinery is constructed out of physical matter that follows quantum mechanics, and each operation, if it is to be unambiguous, must be a transition of the system from one state to an orthogonal state. Suppose the computing machinery is a physical system evolving under Hamiltonian that does not change with time. Then according to the Margolus–Levitin theorem, its operations per time per energy obey [math]\displaystyle{ \frac{1/\delta t_{\perp}}{E} \le \frac{1}{\hbar \frac\pi 2} = 6 \times 10^{33} \mathrm{s}^{-1}\cdot \mathrm{J}^{-1}. }[/math] That is, the processing rate of all forms of computation cannot be higher than about 6 × 1033 operations per second per joule of energy. This includes "classical" computers since even classical computers are still made of matter that follows quantum mechanics.

References

  1. Deffner, S.; Campbell, S. (10 October 2017). "Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control". J. Phys. A: Math. Theor. 50 (45): 453001. doi:10.1088/1751-8121/aa86c6. 
  2. Mandelshtam, L. I.; Tamm, I. E. (1945). "The uncertainty relation between energy and time in nonrelativistic quantum mechanics". J. Phys. (USSR) 9: 249–254. 
  3. Margolus, Norman; Levitin, Lev B. (September 1998). "The maximum speed of dynamical evolution". Physica D: Nonlinear Phenomena 120 (1–2): 188–195. doi:10.1016/S0167-2789(98)00054-2. 
  4. Taddei, M. M.; Escher, B. M.; Davidovich, L.; de Matos Filho, R. L. (30 January 2013). "Quantum Speed Limit for Physical Processes". Physical Review Letters 110 (5): 050402. doi:10.1103/PhysRevLett.110.050402. PMID 23414007. 
  5. del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F. (30 January 2013). "Quantum Speed Limits in Open System Dynamics". Physical Review Letters 110 (5): 050403. doi:10.1103/PhysRevLett.110.050403. PMID 23414008. 
  6. Deffner, S.; Lutz, E. (3 July 2013). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters 111 (1): 010402. doi:10.1103/PhysRevLett.111.010402. PMID 23862985. 
  7. Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; Corcos, L. P.; Orozco, L. A.; Deffner, S. (11 June 2015). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters 114 (23): 233602. doi:10.1103/PhysRevLett.114.233602. PMID 26196802. 
  8. Lloyd, Seth (31 August 2000). "Ultimate physical limits to computation" (in en). Nature 406 (6799): 1047–1054. doi:10.1038/35023282. ISSN 1476-4687. PMID 10984064. 
  9. Lloyd, Seth (24 May 2002). "Computational Capacity of the Universe". Physical Review Letters 88 (23): 237901. doi:10.1103/PhysRevLett.88.237901. PMID 12059399. 
  10. Deffner, S. (20 October 2017). "Geometric quantum speed limits: a case for Wigner phase space". New Journal of Physics 19 (10): 103018. doi:10.1088/1367-2630/aa83dc. 
  11. Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A. (12 February 2018). "Quantum Speed Limits across the Quantum-to-Classical Transition". Physical Review Letters 120 (7): 070401. doi:10.1103/PhysRevLett.120.070401. PMID 29542956. 
  12. Okuyama, Manaka; Ohzeki, Masayuki (12 February 2018). "Quantum Speed Limit is Not Quantum". Physical Review Letters 120 (7): 070402. doi:10.1103/PhysRevLett.120.070402. PMID 29542975. 
  13. Ness, Gal; Lam, Manolo R.; Alt, Wolfgang; Meschede, Dieter; Sagi, Yoav; Alberti, Andrea (22 December 2021). "Observing crossover between quantum speed limits". Science Advances 7 (52): eabj9119. doi:10.1126/sciadv.abj9119. PMID 34936463. 
  14. Deffner, Sebastian; Lutz, Eric (2013-08-23). "Energy–time uncertainty relation for driven quantum systems". Journal of Physics A: Mathematical and Theoretical 46 (33): 335302. doi:10.1088/1751-8113/46/33/335302. ISSN 1751-8113. https://iopscience.iop.org/article/10.1088/1751-8113/46/33/335302.