Physics:Relaxor ferroelectric

From HandWiki

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. (As of 2015), although they have been studied for over fifty years,[1] the mechanism for this effect is still not completely understood, and is the subject of continuing research.[2][3][4]

Examples of relaxor ferroelectrics include:

  • lead magnesium niobate (PMN) [5][6][7]
  • lead magnesium niobate-lead titanate (PMN-PT) [8]
  • lead lanthanum zirconate titanate (PLZT)[9]
  • lead scandium niobate (PSN) [10]
  • Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT)[11]
  • Barium Titanium-Barium Strontium Titanium (BT-BST) [12]

Applications

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage.[9] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.[11]

References

  1. Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science 41 (1): 31. doi:10.1007/s10853-005-5915-7. Bibcode2006JMatS..41...31B. 
  2. Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters 110 (14): 147602. doi:10.1103/PhysRevLett.110.147602. PMID 25167037. Bibcode2013PhRvL.110n7602T. 
  3. Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge et al. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B 81 (14): 144102. doi:10.1103/PhysRevB.81.144102. Bibcode2010PhRvB..81n4102G. 
  4. Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A. et al. (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences 111 (5): 1754–1759. doi:10.1073/pnas.1314780111. ISSN 0027-8424. PMID 24449912. Bibcode2014PNAS..111.1754P. 
  5. Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science 41 (1): 31–52. doi:10.1007/s10853-005-5915-7. Bibcode2006JMatS..41...31B. 
  6. Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected" (in en). NC State News. https://news.ncsu.edu/2018/02/atomic-structure-relaxor-2018/. 
  7. Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters 112 (8): 082901. doi:10.1063/1.5016561. Bibcode2018ApPhL.112h2901C. https://ro.uow.edu.au/aiimpapers/2997. 
  8. and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi:10.1109/ICPADM.1988.38349. 
  9. 9.0 9.1 Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces 6 (24): 22417–22422. doi:10.1021/am506247w. ISSN 1944-8244. PMID 25405727. https://www.osti.gov/biblio/1392947. 
  10. Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B 250 (10): 2232–2236. doi:10.1002/pssb.201349259. ISSN 1521-3951. Bibcode2013PSSBR.250.2232B. 
  11. 11.0 11.1 Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials 9 (17): 1803048. doi:10.1002/aenm.201803048. ISSN 1614-6840. 
  12. Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter 24 (44): 445901. doi:10.1088/0953-8984/24/44/445901. ISSN 0953-8984. PMID 23053172. Bibcode2012JPCM...24R5901O.