Physics:Schwinger parametrization
From HandWiki
Short description: Loop integral parametrization
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.
Using the well-known observation that
- [math]\displaystyle{ \frac{1}{A^n}=\frac{1}{(n-1)!}\int^\infty_0 du \, u^{n-1}e^{-uA}, }[/math]
Julian Schwinger noticed that one may simplify the integral:
- [math]\displaystyle{ \int \frac{dp}{A(p)^n}=\frac{1}{\Gamma(n)}\int dp \int^\infty_0 du \, u^{n-1}e^{-uA(p)}=\frac{1}{\Gamma(n)}\int^\infty_0 du \, u^{n-1} \int dp \, e^{-uA(p)}, }[/math]
for Re(n)>0.
Another version of Schwinger parametrization is:
- [math]\displaystyle{ \frac{i}{A+i\epsilon}=\int^\infty_0 du \, e^{iu(A+i\epsilon)}, }[/math]
which is convergent as long as [math]\displaystyle{ \epsilon \gt 0 }[/math] and [math]\displaystyle{ A \in \mathbb R }[/math].[1] It is easy to generalize this identity to n denominators.
See also
References
- ↑ Schwartz, M. D. (2014). "33". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 705. ISBN 9781107034730.
Original source: https://en.wikipedia.org/wiki/Schwinger parametrization.
Read more |