Physics:Schwinger parametrization

From HandWiki
Short description: Loop integral parametrization

Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. It is named after Julian Schwinger,[1] who introduced the method in 1951 for quantum electrodynamics.[2]

Description

Using the observation that

1An=1(n1)!0duun1euA,

one may simplify the integral:

dpA(p)n=1Γ(n)dp0duun1euA(p)=1Γ(n)0duun1dpeuA(p),

for Re(n)>0.

Alternative parametrization

Another version of Schwinger parametrization is:

iA+iϵ=0dueiu(A+iϵ),

which is convergent as long as ϵ>0 and A.[3] It is easy to generalize this identity to n denominators.

See also

References

  1. Schwinger, Julian (1951-06-01). "On Gauge Invariance and Vacuum Polarization". Physical Review 82 (5): 664–679. doi:10.1103/PhysRev.82.664. https://link.aps.org/doi/10.1103/PhysRev.82.664. 
  2. Kim, U-Rae; Cho, Sungwoong; Lee, Jungil (2023-06-01). "The art of Schwinger and Feynman parametrizations" (in en). Journal of the Korean Physical Society 82 (11): 1023–1039. doi:10.1007/s40042-023-00764-3. ISSN 1976-8524. https://doi.org/10.1007/s40042-023-00764-3. 
  3. Schwartz, M. D. (2014). "33". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 705. ISBN 9781107034730.