Physics:Soler model

From HandWiki
Short description: Type of 3+1 dimensional quantum field theory

The soler model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 3 spatial and 1 time dimension. It was introduced in 1938 by Dmitri Ivanenko [1] and re-introduced and investigated in 1970 by Mario Soler[2] as a toy model of self-interacting electron.

This model is described by the Lagrangian density

[math]\displaystyle{ \mathcal{L}=\overline{\psi} \left(i\partial\!\!\!/-m \right) \psi + \frac{g}{2}\left(\overline{\psi} \psi\right)^2 }[/math]

where [math]\displaystyle{ g }[/math] is the coupling constant, [math]\displaystyle{ \partial\!\!\!/=\sum_{\mu=0}^3\gamma^\mu\frac{\partial}{\partial x^\mu} }[/math] in the Feynman slash notations, [math]\displaystyle{ \overline{\psi}=\psi^*\gamma^0 }[/math]. Here [math]\displaystyle{ \gamma^\mu }[/math], [math]\displaystyle{ 0\le\mu\le 3 }[/math], are Dirac gamma matrices.

The corresponding equation can be written as

[math]\displaystyle{ i\frac{\partial}{\partial t}\psi=-i\sum_{j=1}^{3}\alpha^j\frac{\partial}{\partial x^j}\psi+m\beta\psi-g(\overline{\psi} \psi)\beta\psi }[/math],

where [math]\displaystyle{ \alpha^j }[/math], [math]\displaystyle{ 1\le j\le 3 }[/math], and [math]\displaystyle{ \beta }[/math] are the Dirac matrices. In one dimension, this model is known as the massive Gross–Neveu model.[3][4]

Generalizations

A commonly considered generalization is

[math]\displaystyle{ \mathcal{L}=\overline{\psi} \left(i\partial\!\!\!/-m \right) \psi + g\frac{\left(\overline{\psi} \psi\right)^{k+1}}{k+1} }[/math]

with [math]\displaystyle{ k\gt 0 }[/math], or even

[math]\displaystyle{ \mathcal{L}=\overline{\psi} \left(i\partial\!\!\!/-m \right) \psi + F\left(\overline{\psi} \psi\right) }[/math],

where [math]\displaystyle{ F }[/math] is a smooth function.

Features

Internal symmetry

Besides the unitary symmetry U(1), in dimensions 1, 2, and 3 the equation has SU(1,1) global internal symmetry.[5]

Renormalizability

The Soler model is renormalizable by the power counting for [math]\displaystyle{ k=1 }[/math] and in one dimension only, and non-renormalizable for higher values of [math]\displaystyle{ k }[/math] and in higher dimensions.

Solitary wave solutions

The Soler model admits solitary wave solutions of the form [math]\displaystyle{ \phi(x)e^{-i\omega t}, }[/math] where [math]\displaystyle{ \phi }[/math] is localized (becomes small when [math]\displaystyle{ x }[/math] is large) and [math]\displaystyle{ \omega }[/math] is a real number.[6]

Reduction to the massive Thirring model

In spatial dimension 2, the Soler model coincides with the massive Thirring model, due to the relation [math]\displaystyle{ (\bar\psi\psi)^2=J_\mu J^\mu }[/math], with [math]\displaystyle{ \bar\psi\psi=\psi^*\sigma_3\psi }[/math] the relativistic scalar and [math]\displaystyle{ J^\mu=(\psi^*\psi,\psi^*\sigma_1\psi,\psi^*\sigma_2\psi) }[/math] the charge-current density. The relation follows from the identity [math]\displaystyle{ (\psi^*\sigma_1\psi)^2+(\psi^*\sigma_2\psi)^2+(\psi^*\sigma_3\psi)^2 =(\psi^*\psi)^2 }[/math], for any [math]\displaystyle{ \psi\in\Complex^2 }[/math].[7]

See also

References

  1. Dmitri Ivanenko (1938). "Notes to the theory of interaction via particles". Zh. Eksp. Teor. Fiz. 8: 260–266. http://istina.msu.ru/media/publications/articles/079/c1a/1049479/Ivanenko-nonlinear.pdf. 
  2. Mario Soler (1970). "Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy". Phys. Rev. D 1 (10): 2766–2769. doi:10.1103/PhysRevD.1.2766. Bibcode1970PhRvD...1.2766S. http://prd.aps.org/abstract/PRD/v1/i10/p2766_1. 
  3. Gross, David J. and Neveu, André (1974). "Dynamical symmetry breaking in asymptotically free field theories". Phys. Rev. D 10 (10): 3235–3253. doi:10.1103/PhysRevD.10.3235. Bibcode1974PhRvD..10.3235G. 
  4. S.Y. Lee; A. Gavrielides (1975). "Quantization of the localized solutions in two-dimensional field theories of massive fermions". Phys. Rev. D 12 (12): 3880–3886. doi:10.1103/PhysRevD.12.3880. Bibcode1975PhRvD..12.3880L. http://prd.aps.org/abstract/PRD/v12/i12/p3880_1. 
  5. Galindo, A. (1977). "A remarkable invariance of classical Dirac Lagrangians". Lettere al Nuovo Cimento 20 (6): 210–212. doi:10.1007/BF02785129. 
  6. Thierry Cazenave; Luis Vàzquez (1986). "Existence of localized solutions for a classical nonlinear Dirac field". Comm. Math. Phys. 105 (1): 35–47. doi:10.1007/BF01212340. Bibcode1986CMaPh.105...35C. http://projecteuclid.org/getRecord?id=euclid.cmp/1104115255. 
  7. J. Cuevas-Maraver; P.G. Kevrekidis; A. Saxena; A. Comech; R. Lan (2016). "Stability of solitary waves and vortices in a 2D nonlinear Dirac model". Phys. Rev. Lett. 116 (21): 214101. doi:10.1103/PhysRevLett.116.214101. PMID 27284659. Bibcode2016PhRvL.116u4101C.