Physics:Feynman slash notation
In the study of Dirac fields in quantum field theory, Richard Feynman invented the convenient Feynman slash notation (less commonly known as the Dirac slash notation[1]). If A is a covariant vector (i.e., a 1-form),
- [math]\displaystyle{ {A\!\!\!/} \ \stackrel{\mathrm{def}}{=}\ \gamma^1 A_1 + \gamma^2 A_2 + \gamma^3 A_3 + \gamma^4 A_4 }[/math]
where γ are the gamma matrices. Using the Einstein summation notation, the expression is simply
- [math]\displaystyle{ {A\!\!\!/} \ \stackrel{\mathrm{def}}{=}\ \gamma^\mu A_\mu }[/math].
Identities
Using the anticommutators of the gamma matrices, one can show that for any [math]\displaystyle{ a_\mu }[/math] and [math]\displaystyle{ b_\mu }[/math],
- [math]\displaystyle{ \begin{align} {a\!\!\!/}{a\!\!\!/} = a^\mu a_\mu \cdot I_4 = a^2 \cdot I_4 \\ {a\!\!\!/}{b\!\!\!/} + {b\!\!\!/}{a\!\!\!/} = 2 a \cdot b \cdot I_4. \end{align} }[/math]
where [math]\displaystyle{ I_4 }[/math] is the identity matrix in four dimensions.
In particular,
- [math]\displaystyle{ {\partial\!\!\!/}^2 = \partial^2 \cdot I_4. }[/math]
Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example,
- [math]\displaystyle{ \begin{align} \gamma_\mu {a\!\!\!/} \gamma^\mu &= -2 {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} \gamma^\mu &= 4 a \cdot b \cdot I_4 \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/} \gamma^\mu &= -2 {c\!\!\!/}{b\!\!\!/} {a\!\!\!/} \\ \gamma_\mu {a\!\!\!/} {b\!\!\!/} {c\!\!\!/}{d\!\!\!/} \gamma^\mu &= 2( {d\!\!\!/} {a\!\!\!/} {b\!\!\!/}{c\!\!\!/}+{c\!\!\!/} {b\!\!\!/} {a\!\!\!/}{d\!\!\!/}) \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}) &= 4 a \cdot b \\ \operatorname{tr}({a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 \left[(a \cdot b)(c \cdot d) - (a \cdot c)(b \cdot d) + (a \cdot d)(b \cdot c) \right] \\ \operatorname{tr}({a\!\!\!/}{\gamma^\mu}{b\!\!\!/}{\gamma^\nu }) &= 4 \left[a^\mu b^\nu + a^\nu b^\mu - \eta^{\mu \nu}(a \cdot b) \right] \\ \operatorname{tr}(\gamma_5 {a\!\!\!/}{b\!\!\!/}{c\!\!\!/}{d\!\!\!/}) &= 4 i \varepsilon_{\mu \nu \lambda \sigma} a^\mu b^\nu c^\lambda d^\sigma \\ \operatorname{tr}({\gamma^\mu}{a\!\!\!/}{\gamma^\nu}) &= 0 \\ \operatorname{tr}({\gamma^5}{a\!\!\!/}{b\!\!\!/}) &= 0 \\ \operatorname{tr}({\gamma^0}({a\!\!\!/}+m){\gamma^0}({b\!\!\!/}+m)) &= 8a^0b^0-4(a.b)+4m^2 \\ \operatorname{tr}(({a\!\!\!/}+m){\gamma^\mu}({b\!\!\!/}+m){\gamma^\nu}) &= 4 \left[a^\mu b^\nu+a^\nu b^\mu - \eta^{\mu \nu}((a \cdot b)-m^2) \right] \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n}) &= \operatorname{tr}({a\!\!\!/}_{2n}...{a\!\!\!/}_1) \\ \operatorname{tr}({a\!\!\!/}_1...{a\!\!\!/}_{2n+1}) &= 0 \end{align} }[/math]
where:
- [math]\displaystyle{ \varepsilon_{\mu \nu \lambda \sigma} }[/math] is the Levi-Civita symbol
- [math]\displaystyle{ \eta^{\mu \nu} }[/math] is the Minkowski metric
- [math]\displaystyle{ m }[/math] is a scalar.
With four-momentum
This section uses the (+ − − −) metric signature. Often, when using the Dirac equation and solving for cross sections, one finds the slash notation used on four-momentum: using the Dirac basis for the gamma matrices,
- [math]\displaystyle{ \gamma^0 = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix},\quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \, }[/math]
as well as the definition of contravariant four-momentum in natural units,
- [math]\displaystyle{ p^\mu = \left(E, p_x, p_y, p_z \right) \, }[/math]
we see explicitly that
- [math]\displaystyle{ \begin{align} {p\!\!/} &= \gamma^\mu p_\mu = \gamma^0 p^0 - \gamma^i p^i \\ &= \begin{bmatrix} p^0 & 0 \\ 0 & -p^0 \end{bmatrix} - \begin{bmatrix} 0 & \sigma^i p^i \\ -\sigma^i p^i & 0 \end{bmatrix} \\ &= \begin{bmatrix} E & -\vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -E \end{bmatrix}. \end{align} }[/math]
Similar results hold in other bases, such as the Weyl basis.
See also
- Weyl basis
- Gamma matrices
- Four-vector
- S-matrix
References
- ↑ Weinberg, Steven (1995), The Quantum Theory of Fields, 1, Cambridge University Press, p. 358 (380 in polish edition), ISBN 0-521-55001-7, https://books.google.com/books?id=3ws6RJzqisQC&q=%22Dirac%20Slash%22&pg=PA358
- Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 0-471-88741-2. https://archive.org/details/quarksleptonsint0000halz.
de:Dirac-Matrizen#Feynman-Slash-Notation
Original source: https://en.wikipedia.org/wiki/Feynman slash notation.
Read more |