Physics:Transport coefficient
A transport coefficient [math]\displaystyle{ \gamma }[/math] measures how rapidly a perturbed system returns to equilibrium. The transport coefficients occur in transport phenomenon with transport laws
- [math]\displaystyle{ \mathbf{J}_k = \gamma_k \mathbf{X}_k }[/math]
where:
- [math]\displaystyle{ \mathbf{J}_k }[/math] is a flux of the property [math]\displaystyle{ k }[/math]
- the transport coefficient [math]\displaystyle{ \gamma _k }[/math] of this property [math]\displaystyle{ k }[/math]
- [math]\displaystyle{ \mathbf{X}_k }[/math], the gradient force which acts on the property [math]\displaystyle{ k }[/math].
Transport coefficients can be expressed via a Green–Kubo relation:
- [math]\displaystyle{ \gamma = \int_0^\infty \left\langle \dot{A}(t) \dot{A}(0) \right\rangle \, dt, }[/math]
where [math]\displaystyle{ A }[/math] is an observable occurring in a perturbed Hamiltonian, [math]\displaystyle{ \langle \cdot \rangle }[/math] is an ensemble average and the dot above the A denotes the time derivative.[1] For times [math]\displaystyle{ t }[/math] that are greater than the correlation time of the fluctuations of the observable the transport coefficient obeys a generalized Einstein relation:
- [math]\displaystyle{ 2t\gamma = \left\langle |A(t) - A(0)|^2 \right\rangle. }[/math]
In general a transport coefficient is a tensor.
Examples
- Diffusion constant, relates the flux of particles with the negative gradient of the concentration (see Fick's laws of diffusion)
- Thermal conductivity (see Fourier's law)
- Ionic conductivity
- Mass transport coefficient
- Shear viscosity [math]\displaystyle{ \eta = \frac{1}{k_BT V} \int_0^\infty dt \, \langle \sigma_{xy}(0) \sigma_{xy} (t) \rangle }[/math], where [math]\displaystyle{ \sigma }[/math] is the viscous stress tensor (see Newtonian fluid)
- Electrical conductivity
Transport coefficients of higher order
For strong gradients the transport equation typically has to be modified with higher order terms (and higher order Transport coefficients).[2]
See also
- Linear response theory
- Onsager reciprocal relations
References
- ↑ Water in Biology, Chemistry, and Physics: Experimental Overviews and Computational Methodologies, G. Wilse Robinson, ISBN:9789810224516, p. 80, Google Books
- ↑ Kockmann, N. (2007). Transport Phenomena in Micro Process Engineering. Deutschland: Springer Berlin Heidelberg, page 66, Google books
Original source: https://en.wikipedia.org/wiki/Transport coefficient.
Read more |