Physics:Vacuum solution

From HandWiki

A vacuum solution is a solution of a field equation in which the sources of the field are taken to be identically zero. That is, such field equations are written without matter interaction (i.e.- set to zero).

Examples

Maxwell's equations

Main page: Physics:Maxwell's equations

In Maxwell's theory of electromagnetism, a vacuum solution would represent the electromagnetic field in a region of space where there are no electromagnetic sources (charges and electric currents), i.e. where the current[clarification needed] 4-vector vanishes:[1]

[math]\displaystyle{ J^a=0 }[/math]

Einstein field equations

In Einstein's theory of general relativity, a vacuum solution[2] would represent the gravitational field in a region of spacetime where there are no gravitational sources (masses), i.e. where the energy–momentum tensor vanishes:[3]

[math]\displaystyle{ T_{ab}=0 }[/math]


Black hole vacuum solution

Main page: Astronomy:Kerr metric


Kasner space

Main page: Kasner metric

Kasner vacuum solution[4]


Kaluza-Klein theory

In a Kaluza–Klein vacuum (static) field equations[5]

See also

Notes

  1. Esposito, S. (1997), "Classical vgr? c solutions of Maxwell's equations and the photon tunneling effect", Physics Letters A 225 (4-6): 203–209, doi:10.1016/S0375-9601(96)00872-9, Bibcode1997PhLA..225..203E, http://linkinghub.elsevier.com/retrieve/pii/S0375960196008729, retrieved 2009-07-04 
  2. Stephani, H. (2003), Exact solutions of Einstein's field equations, https://www.loc.gov/catdir/samples/cam033/2002071495.pdf, retrieved 2009-07-04 
  3. Quevedo, H. (1990), "Multipole Moments in General Relativity-Static and Stationary Vacuum Solutions", Fortschritte der Physik 38 (10): 733, doi:10.1002/prop.2190381002, Bibcode1990ForPh..38..733Q, http://www3.interscience.wiley.com/journal/112587363/abstract, retrieved 2009-07-04 
  4. Chodos, A.; Detweiler, S. (1980), "Where has the fifth dimension gone?", Physical Review D 21 (8): 2167–2170, doi:10.1103/PhysRevD.21.2167, Bibcode1980PhRvD..21.2167C 
  5. Sorkin, R.D. (1983), "Kaluza-klein monopole", Physical Review Letters 51 (2): 87–90, doi:10.1103/PhysRevLett.51.87, Bibcode1983PhRvL..51...87S 

References