Pochhammer k-symbol

From HandWiki
Short description: Term in the mathematical theory of special functions

In the mathematical theory of special functions, the Pochhammer k-symbol and the k-gamma function, introduced by Rafael Díaz and Eddy Pariguan [1] are generalizations of the Pochhammer symbol and gamma function. They differ from the Pochhammer symbol and gamma function in that they can be related to a general arithmetic progression in the same manner as those are related to the sequence of consecutive integers.

Definition

The Pochhammer k-symbol (x)n,k is defined as

[math]\displaystyle{ \begin{align} (x)_{n,k} & = x(x + k)(x + 2k) \cdots (x + (n-1)k)=\prod_{i=1}^n (x+(i-1)k) \\ & = k^n \times \left(\frac{x}{k}\right)_n,\, \end{align} }[/math]

and the k-gamma function Γk, with k > 0, is defined as

[math]\displaystyle{ \Gamma_k(x) = \lim_{n\to\infty} \frac{n!k^n (nk)^{x/k - 1}}{(x)_{n,k}}. }[/math]

When k = 1 the standard Pochhammer symbol and gamma function are obtained.

Díaz and Pariguan use these definitions to demonstrate a number of properties of the hypergeometric function. Although Díaz and Pariguan restrict these symbols to k > 0, the Pochhammer k-symbol as they define it is well-defined for all real k, and for negative k gives the falling factorial, while for k = 0 it reduces to the power xn.

The Díaz and Pariguan paper does not address the many analogies between the Pochhammer k-symbol and the power function, such as the fact that the binomial theorem can be extended to Pochhammer k-symbols. It is true, however, that many equations involving the power function xn continue to hold when xn is replaced by (x)n,k.

Continued Fractions, Congruences, and Finite Difference Equations

Jacobi-type J-fractions for the ordinary generating function of the Pochhammer k-symbol, denoted in slightly different notation by [math]\displaystyle{ p_n(\alpha, R) := R(R+\alpha)\cdots(R+(n-1)\alpha) }[/math] for fixed [math]\displaystyle{ \alpha \gt 0 }[/math] and some indeterminate parameter [math]\displaystyle{ R }[/math], are considered in [2] in the form of the next infinite continued fraction expansion given by

[math]\displaystyle{ \begin{align} \text{Conv}_h(\alpha, R; z) & := \cfrac{1}{1 - R \cdot z - \cfrac{\alpha R \cdot z^2}{ 1 - (R+2\alpha) \cdot z - \cfrac{2\alpha (R + \alpha) \cdot z^2}{ 1 - (R + 4\alpha) \cdot z - \cfrac{3\alpha (R + 2\alpha) \cdot z^2}{ \cdots}}}}. \end{align} }[/math]

The rational [math]\displaystyle{ h^{th} }[/math] convergent function, [math]\displaystyle{ \text{Conv}_h(\alpha, R; z) }[/math], to the full generating function for these products expanded by the last equation is given by

[math]\displaystyle{ \begin{align} \text{Conv}_h(\alpha, R; z) & := \cfrac{1}{1 - R \cdot z - \cfrac{\alpha R \cdot z^2}{ 1 - (R+2\alpha) \cdot z - \cfrac{2\alpha (R + \alpha) \cdot z^2}{ 1 - (R + 4\alpha) \cdot z - \cfrac{3\alpha (R + 2\alpha) \cdot z^2}{ \cfrac{\cdots}{1 - (R + 2 (h-1) \alpha) \cdot z}}}}} \\ & = \frac{\text{FP}_h(\alpha, R; z)}{\text{FQ}_h(\alpha, R; z)} = \sum_{n=0}^{2h-1} p_n(\alpha, R) z^n + \sum_{n=2h}^{\infty} \widetilde{e}_{h,n}(\alpha, R) z^n, \end{align} }[/math]

where the component convergent function sequences, [math]\displaystyle{ \text{FP}_h(\alpha, R; z) }[/math] and [math]\displaystyle{ \text{FQ}_h(\alpha, R; z) }[/math], are given as closed-form sums in terms of the ordinary Pochhammer symbol and the Laguerre polynomials by

[math]\displaystyle{ \begin{align} \text{FP}_h(\alpha, R; z) & = \sum_{n=0}^{h-1}\left[\sum_{i=0}^n \binom{h}{i} (1-h-R/\alpha)_i (R/\alpha)_{n-i}\right] (\alpha z)^n \\ \text{FQ}_h(\alpha, R; z) & = \sum_{i=0}^h \binom{h}{i} (R/\alpha+h-i)_i(-\alpha z)^i \\ & = (-\alpha z)^h \cdot h! \cdot L_h^{(R/\alpha-1)}\left((\alpha z)^{-1}\right). \end{align} }[/math]

The rationality of the [math]\displaystyle{ h^{th} }[/math] convergent functions for all [math]\displaystyle{ h \geq 2 }[/math], combined with known enumerative properties of the J-fraction expansions, imply the following finite difference equations both exactly generating [math]\displaystyle{ (x)_{n,\alpha} }[/math] for all [math]\displaystyle{ n \geq 1 }[/math], and generating the symbol modulo [math]\displaystyle{ h \alpha^t }[/math] for some fixed integer [math]\displaystyle{ 0 \leq t \leq h }[/math]:

[math]\displaystyle{ \begin{align} (x)_{n,\alpha} & = \sum_{0 \leq k \lt n} \binom{n}{k+1} (-1)^k (x+(n-1)\alpha)_{k+1,-\alpha} (x)_{n-1-k,\alpha} \\ (x)_{n,\alpha} & \equiv \sum_{0 \leq k \leq n} \binom{h}{k} \alpha^{n+(t+1)k} (1-h-x/\alpha)_k (x/\alpha)_{n-k} && \pmod{h \alpha^t}. \end{align} }[/math]

The rationality of [math]\displaystyle{ \text{Conv}_h(\alpha, R; z) }[/math] also implies the next exact expansions of these products given by

[math]\displaystyle{ (x)_{n,\alpha} = \sum_{j=1}^h c_{h,j}(\alpha, x) \times \ell_{h,j}(\alpha, x)^n, }[/math]

where the formula is expanded in terms of the special zeros of the Laguerre polynomials, or equivalently, of the confluent hypergeometric function, defined as the finite (ordered) set

[math]\displaystyle{ \left(\ell_{h,j}(\alpha, x)\right)_{j=1}^h = \left\{ z_j : \alpha^h \times U\left(-h, \frac{x}{\alpha}, \frac{z}{\alpha}\right) = 0,\ 1 \leq j \leq h \right\}, }[/math]

and where [math]\displaystyle{ \text{Conv}_h(\alpha, R; z) := \sum_{j=1}^h c_{h,j}(\alpha, x) / (1-\ell_{h,j}(\alpha, x)) }[/math] denotes the partial fraction decomposition of the rational [math]\displaystyle{ h^{th} }[/math] convergent function.

Additionally, since the denominator convergent functions, [math]\displaystyle{ \text{FQ}_h(\alpha, R; z) }[/math], are expanded exactly through the Laguerre polynomials as above, we can exactly generate the Pochhammer k-symbol as the series coefficients

[math]\displaystyle{ (x)_{n,\alpha} = \alpha^n \cdot [w^n]\left(\sum_{i=0}^{n+n_0-1} \binom{\frac{x}{\alpha}+i-1}{i} \times \frac{(-1/w)}{(i+1) L_i^{(x/\alpha-1)}(1/w) L_{i+1}^{(x/\alpha-1)}(1/w)}\right), }[/math]

for any prescribed integer [math]\displaystyle{ n_0 \geq 0 }[/math].

Special Cases

Special cases of the Pochhammer k-symbol, [math]\displaystyle{ (x)_{n,k} }[/math], correspond to the following special cases of the falling and rising factorials, including the Pochhammer symbol, and the generalized cases of the multiple factorial functions (multifactorial functions), or the [math]\displaystyle{ \alpha }[/math]-factorial functions studied in the last two references by Schmidt:

  • The Pochhammer symbol, or rising factorial function: [math]\displaystyle{ (x)_{n,1} \equiv (x)_n }[/math]
  • The falling factorial function: [math]\displaystyle{ (x)_{n,-1} \equiv x^{\underline{n}} }[/math]
  • The single factorial function: [math]\displaystyle{ n! = (1)_{n,1} = (n)_{n,-1} }[/math]
  • The double factorial function: [math]\displaystyle{ (2n-1)!! = (1)_{n,2} = (2n-1)_{n,-2} }[/math]
  • The multifactorial functions defined recursively by [math]\displaystyle{ n!_{(\alpha)} = n \cdot (n-\alpha)!_{(\alpha)} }[/math] for [math]\displaystyle{ \alpha \in \mathbb{Z}^{+} }[/math] and some offset [math]\displaystyle{ 0 \leq d \lt \alpha }[/math]: [math]\displaystyle{ (\alpha n-d)!_{(\alpha)} = (\alpha-d)_{n,\alpha} = (\alpha n-d)_{n,-\alpha} }[/math] and [math]\displaystyle{ n!_{(\alpha)} = (n)_{\lfloor (n+\alpha-1) / \alpha \rfloor,-\alpha} }[/math]

The expansions of these k-symbol-related products considered termwise with respect to the coefficients of the powers of [math]\displaystyle{ x^k }[/math] ([math]\displaystyle{ 1 \leq k \leq n }[/math]) for each finite [math]\displaystyle{ n \geq 1 }[/math] are defined in the article on generalized Stirling numbers of the first kind and generalized Stirling (convolution) polynomials in.[3]

References

  1. Díaz, Rafael; Eddy Pariguan (2005). "On hypergeometric functions and k-Pochhammer symbol". arXiv:math/0405596.
  2. Schmidt, Maxie D. (2017), Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions, 20, J. Integer Seq., https://cs.uwaterloo.ca/journals/JIS/VOL20/Schmidt/schmidt14.html 
  3. Schmidt, Maxie D. (2010), Generalized j-Factorial Functions, Polynomials, and Applications, 13, J. Integer Seq., https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html