Poincaré–Lelong equation
From HandWiki
In mathematics, the Poincaré–Lelong equation, studied by Lelong (1964), is the partial differential equation
- [math]\displaystyle{ i\partial\overline\partial u=\rho }[/math]
on a Kähler manifold, where ρ is a positive (1,1)-form.
References
- Mok, Ngaiming; Siu, Yum Tong; Yau, Shing Tung (1981), "The Poincaré–Lelong equation on complete Kähler manifolds", Compositio Mathematica 44 (1): 183–218, ISSN 0010-437X, http://www.numdam.org/item?id=CM_1981__44_1-3_183_0
- Lelong, Pierre (1964), "Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans Cn", Journal d'Analyse Mathématique 12: 365–407, doi:10.1007/bf02807441, ISSN 0021-7670
Original source: https://en.wikipedia.org/wiki/Poincaré–Lelong equation.
Read more |