Poly-Bernoulli number

From HandWiki
Short description: Integer sequence

In mathematics, poly-Bernoulli numbers, denoted as [math]\displaystyle{ B_{n}^{(k)} }[/math], were defined by M. Kaneko as

[math]\displaystyle{ {Li_{k}(1-e^{-x}) \over 1-e^{-x}}=\sum_{n=0}^{\infty}B_{n}^{(k)}{x^{n}\over n!} }[/math]

where Li is the polylogarithm. The [math]\displaystyle{ B_{n}^{(1)} }[/math] are the usual Bernoulli numbers.

Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows

[math]\displaystyle{ {Li_{k}(1-(ab)^{-x})\over b^x-a^{-x}}c^{xt}=\sum_{n=0}^{\infty}B_{n}^{(k)}(t;a,b,c){x^{n}\over n!} }[/math]

where Li is the polylogarithm.

Kaneko also gave two combinatorial formulas:

[math]\displaystyle{ B_{n}^{(-k)}=\sum_{m=0}^{n}(-1)^{m+n}m!S(n,m)(m+1)^{k}, }[/math]
[math]\displaystyle{ B_{n}^{(-k)}=\sum_{j=0}^{\min(n,k)} (j!)^{2}S(n+1,j+1)S(k+1,j+1), }[/math]

where [math]\displaystyle{ S(n,k) }[/math] is the number of ways to partition a size [math]\displaystyle{ n }[/math] set into [math]\displaystyle{ k }[/math] non-empty subsets (the Stirling number of the second kind).

A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of [math]\displaystyle{ n }[/math] by [math]\displaystyle{ k }[/math] (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board [math]\displaystyle{ \underbrace{1\cdots1}_{n}\underbrace{0\cdots0}_{k} }[/math] (see A329718 for definition).

The Poly-Bernoulli number [math]\displaystyle{ B_{k}^{(-k)} }[/math] satisfies the following asymptotic:[1]

[math]\displaystyle{ B_{k}^{(-k)} \sim (k!)^2 \sqrt{\frac{1}{k\pi(1-\log 2)}}\left( \frac{1}{\log 2} \right) ^{2k+1}, \quad \text{as } k \rightarrow \infty. }[/math]

For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy

[math]\displaystyle{ B_n^{(-p)} \equiv 2^n \pmod p, }[/math]

which can be seen as an analog of Fermat's little theorem. Further, the equation

[math]\displaystyle{ B_x^{(-n)} + B_y^{(-n)} = B_z^{(-n)} }[/math]

has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem. Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as Poly-Euler numbers.

See also

References

  1. Khera, J.; Lundberg, E.; Melczer, S. (2021), "Asymptotic Enumeration of Lonesum Matrices", Advances in Applied Mathematics 123 (4): 102118, doi:10.1016/j.aam.2020.102118, https://www.sciencedirect.com/science/article/abs/pii/S0196885820301214 .