Popoviciu's inequality

From HandWiki

In convex analysis, Popoviciu's inequality is an inequality about convex functions. It is similar to Jensen's inequality and was found in 1965 by Tiberiu Popoviciu,[1][2] a Romanian mathematician.

Formulation

Let f be a function from an interval [math]\displaystyle{ I \subseteq \mathbb{R} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. If f is convex, then for any three points x, y, z in I,

[math]\displaystyle{ \frac{f(x)+f(y)+f(z)}{3} + f\left(\frac{x+y+z}{3}\right) \ge \frac{2}{3}\left[ f\left(\frac{x+y}{2}\right) + f\left(\frac{y+z}{2}\right) + f\left(\frac{z+x}{2}\right) \right]. }[/math]

If a function f is continuous, then it is convex if and only if the above inequality holds for all xyz from [math]\displaystyle{ I }[/math]. When f is strictly convex, the inequality is strict except for x = y = z.[3]

Generalizations

It can be generalized to any finite number n of points instead of 3, taken on the right-hand side k at a time instead of 2 at a time:[4]

Let f be a continuous function from an interval [math]\displaystyle{ I \subseteq \mathbb{R} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. Then f is convex if and only if, for any integers n and k where n ≥ 3 and [math]\displaystyle{ 2 \leq k \leq n-1 }[/math], and any n points [math]\displaystyle{ x_1, \dots, x_n }[/math] from I,

[math]\displaystyle{ \frac{1}{k} \binom{n-2}{k-2} \left( \frac{n-k}{k-1} \sum_{i=1}^{n}f(x_i) + nf\left(\frac1n\sum_{i=1}^{n}x_i\right) \right)\ge \sum_{1 \le i_1 \lt \dots \lt i_k \le n} f\left( \frac1k \sum_{j=1}^{k} x_{i_j} \right) }[/math]

Popoviciu's inequality can also be generalized to a weighted inequality.[5][6][7] [8]

Notes

  1. Tiberiu Popoviciu (1965), "Sur certaines inégalités qui caractérisent les fonctions convexes", Analele ştiinţifice Univ. "Al.I. Cuza" Iasi, Secţia I a Mat. 11: 155–164 
  2. Popoviciu's paper has been published in Romanian language, but the interested reader can find his results in the review Zbl 0166.06303. Page 1 Page 2
  3. Constantin Niculescu; Lars-Erik Persson (2006), Convex functions and their applications: a contemporary approach, Springer Science & Business, p. 12, ISBN 978-0-387-24300-9, https://books.google.com/books?id=M5tYCzB8FQcC&dq=Popoviciu%27s+inequality&pg=PA12 
  4. J. E. Pečarić; Frank Proschan; Yung Liang Tong (1992), Convex functions, partial orderings, and statistical applications, Academic Press, p. 171, ISBN 978-0-12-549250-8, https://books.google.com/books?id=rCAOFpic7AkC&dq=Popoviciu&pg=PA171 
  5. P. M. Vasić; Lj. R. Stanković (1976), "Some inequalities for convex functions", Math. Balkanica (6 (1976)): 281–288 
  6. Grinberg, Darij (2008). "Generalizations of Popoviciu's inequality". arXiv:0803.2958v1 [math.FA].
  7. M.Mihai; F.-C. Mitroi-Symeonidis (2016), "New extensions of Popoviciu's inequality", Mediterr. J. Math., Volume 13 13 (5): 3121–3133, doi:10.1007/s00009-015-0675-3, ISSN 1660-5446 
  8. M.W. Alomari (2021), "Popoviciu’s type inequalities for h-MN-convex functions", e-Journal of Analysis and Applied Mathematics, Volume 2021 2021 (1): 48-89, doi:10.2478/ejaam-2021-0005