Proofs of elementary ring properties
The following proofs of elementary ring properties use only the axioms that define a mathematical ring:
Basics
Multiplication by zero
Theorem: [math]\displaystyle{ 0\cdot a=a\cdot 0=0 }[/math]
[math]\displaystyle{ 0\cdot a=(0+0)\cdot a=(0\cdot a)+(0\cdot a) }[/math]
By subtracting (i.e. adding the additive inverse of) [math]\displaystyle{ 0\cdot a }[/math] on both sides of the equation, we get the desired result. The proof that [math]\displaystyle{ a\cdot 0=0 }[/math] is similar.Unique identity element per binary operation
Theorem: The identity element e for a binary opertaion (addition or multiplication) of a ring is unique.
Unique additive inverse element
Theorem: - a as the additive inverse element for a is unique.
Unique multiplicative inverse element
Theorem: a-1 as the multiplicative inverse element for a is unique.
Zero ring
Theorem: A ring [math]\displaystyle{ (R, +, \cdot) }[/math] is the zero ring (that is, consists of precisely one element) if and only if [math]\displaystyle{ 0 = 1 }[/math].
Multiplication by negative one
Theorem: [math]\displaystyle{ (-1)a=-a }[/math]
[math]\displaystyle{ (-1)\cdot a+a=(-1)\cdot a+1\cdot a=((-1)+1)\cdot a=0\cdot a=0 }[/math]
Therefore [math]\displaystyle{ (-1)\cdot a = (-1)\cdot a + 0 = (-1) \cdot a + (a + (-a))= ((-1) \cdot a + a) + (-a) = 0 + (-a) = (-a) }[/math].Multiplication by additive inverse
Theorem: [math]\displaystyle{ (-a) \cdot b= a \cdot (-b) = -(ab) }[/math]
To prove that the first expression equals the second one, [math]\displaystyle{ (-a)\cdot b = ((-1) \cdot a) \cdot b = (a \cdot (-1)) \cdot b = a\cdot ((-1) \cdot b) = a(-b). }[/math]
To prove that the first expression equals the third one, [math]\displaystyle{ (-a) \cdot b = ((-1) \cdot a) \cdot b = (-1) \cdot (a \cdot b). }[/math]
A pseudo-ring does not necessarily have a multiplicative identity element. To prove that the first expression equals the third one without assuming the existence of a multiplicative identity, we show that [math]\displaystyle{ (-a) \cdot b }[/math] is indeed the inverse of [math]\displaystyle{ (a \cdot b) }[/math] by showing that adding them up results in the additive identity element,
[math]\displaystyle{ (a \cdot b) + (-a) \cdot b = (a - a) \cdot b = 0 \cdot b = 0 }[/math].This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Proofs of elementary ring properties.
Read more |