Pseudoanalytic function
In mathematics, pseudoanalytic functions are functions introduced by Lipman Bers (1950, 1951, 1953, 1956) that generalize analytic functions and satisfy a weakened form of the Cauchy–Riemann equations.
Definitions
Let [math]\displaystyle{ z=x+iy }[/math] and let [math]\displaystyle{ \sigma(x,y)=\sigma(z) }[/math] be a real-valued function defined in a bounded domain [math]\displaystyle{ D }[/math]. If [math]\displaystyle{ \sigma\gt 0 }[/math] and [math]\displaystyle{ \sigma_x }[/math] and [math]\displaystyle{ \sigma_y }[/math] are Hölder continuous, then [math]\displaystyle{ \sigma }[/math] is admissible in [math]\displaystyle{ D }[/math]. Further, given a Riemann surface [math]\displaystyle{ F }[/math], if [math]\displaystyle{ \sigma }[/math] is admissible for some neighborhood at each point of [math]\displaystyle{ F }[/math], [math]\displaystyle{ \sigma }[/math] is admissible on [math]\displaystyle{ F }[/math].
The complex-valued function [math]\displaystyle{ f(z)=u(x,y)+iv(x,y) }[/math] is pseudoanalytic with respect to an admissible [math]\displaystyle{ \sigma }[/math] at the point [math]\displaystyle{ z_0 }[/math] if all partial derivatives of [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] exist and satisfy the following conditions:
- [math]\displaystyle{ u_x=\sigma(x,y)v_y, \quad u_y=-\sigma(x,y)v_x }[/math]
If [math]\displaystyle{ f }[/math] is pseudoanalytic at every point in some domain, then it is pseudoanalytic in that domain.[1]
Similarities to analytic functions
- If [math]\displaystyle{ f(z) }[/math] is not the constant [math]\displaystyle{ 0 }[/math], then the zeroes of [math]\displaystyle{ f }[/math] are all isolated.
- Therefore, any analytic continuation of [math]\displaystyle{ f }[/math] is unique.[2]
Examples
- Complex constants are pseudoanalytic.
- Any linear combination with real coefficients of pseudoanalytic functions is pseudoanalytic.[1]
See also
- Quasiconformal mapping
- Elliptic partial differential equations
- Cauchy-Riemann equations
References
- ↑ 1.0 1.1 Bers, Lipman (1950), "Partial differential equations and generalized analytic functions", Proceedings of the National Academy of Sciences of the United States of America 36 (2): 130–136, doi:10.1073/pnas.36.2.130, ISSN 0027-8424, PMID 16588958, PMC 1063147, Bibcode: 1950PNAS...36..130B, http://www.pnas.org/content/36/2/130.full.pdf
- ↑ Bers, Lipman (1956), "An outline of the theory of pseudoanalytic functions", Bulletin of the American Mathematical Society 62 (4): 291–331, doi:10.1090/s0002-9904-1956-10037-2, ISSN 0002-9904, https://www.ams.org/journals/bull/1956-62-04/S0002-9904-1956-10037-2/S0002-9904-1956-10037-2.pdf
Further reading
- Kravchenko, Vladislav V. (2009). Applied pseudoanalytic function theory. Birkhauser. ISBN 978-3-0346-0004-0.
- Bers, Lipman (1951), "Partial differential equations and generalized analytic functions. Second Note", Proceedings of the National Academy of Sciences of the United States of America 37 (1): 42–47, doi:10.1073/pnas.37.1.42, ISSN 0027-8424, PMID 16588987, PMC 1063297, Bibcode: 1951PNAS...37...42B, http://www.pnas.org/content/37/1/42.full.pdf
- Bers, Lipman (1953), Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York University, New York, https://books.google.com/books?id=79dWAAAAMAAJ
Original source: https://en.wikipedia.org/wiki/Pseudoanalytic function.
Read more |