Pure submodule
In mathematics, especially in the field of module theory, the concept of pure submodule provides a generalization of direct summand, a type of particularly well-behaved piece of a module. Pure modules are complementary to flat modules and generalize Prüfer's notion of pure subgroups. While flat modules are those modules which leave short exact sequences exact after tensoring, a pure submodule defines a short exact sequence (known as a pure exact sequence) that remains exact after tensoring with any module. Similarly a flat module is a direct limit of projective modules, and a pure exact sequence is a direct limit of split exact sequences.
Definition
Let R be a ring (associative, with 1), let M be a (left) module over R, let P be a submodule of M and let i: P → M be the natural injective map. Then P is a pure submodule of M if, for any (right) R-module X, the natural induced map idX ⊗ i : X ⊗ P → X ⊗ M (where the tensor products are taken over R) is injective.
Analogously, a short exact sequence
- [math]\displaystyle{ 0 \longrightarrow A\,\ \stackrel{f}{\longrightarrow}\ B\,\ \stackrel{g}{\longrightarrow}\ C \longrightarrow 0 }[/math]
of (left) R-modules is pure exact if the sequence stays exact when tensored with any (right) R-module X. This is equivalent to saying that f(A) is a pure submodule of B.
Equivalent characterizations
Purity of a submodule can also be expressed element-wise; it is really a statement about the solvability of certain systems of linear equations. Specifically, P is pure in M if and only if the following condition holds: for any m-by-n matrix (aij) with entries in R, and any set y1, ..., ym of elements of P, if there exist elements x1, ..., xn in M such that
- [math]\displaystyle{ \sum_{j=1}^n a_{ij}x_j = y_i \qquad\mbox{ for } i=1,\ldots,m }[/math]
then there also exist elements x1′, ..., xn′ in P such that
- [math]\displaystyle{ \sum_{j=1}^n a_{ij}x'_j = y_i \qquad\mbox{ for } i=1,\ldots,m }[/math]
Another characterization is: a sequence is pure exact if and only if it is the filtered colimit (also known as direct limit) of split exact sequences
- [math]\displaystyle{ 0 \longrightarrow A_i \longrightarrow B_i \longrightarrow C_i \longrightarrow 0. }[/math][1]
Examples
- Every direct summand of M is pure in M. Consequently, every subspace of a vector space over a field is pure.
Properties
(Lam 1999, p.154) Suppose
- [math]\displaystyle{ 0 \longrightarrow A\,\ \stackrel{f}{\longrightarrow}\ B\,\ \stackrel{g}{\longrightarrow}\ C \longrightarrow 0 }[/math]
is a short exact sequence of R-modules, then:
- C is a flat module if and only if the exact sequence is pure exact for every A and B. From this we can deduce that over a von Neumann regular ring, every submodule of every R-module is pure. This is because every module over a von Neumann regular ring is flat. The converse is also true. (Lam 1999, p.162)
- Suppose B is flat. Then the sequence is pure exact if and only if C is flat. From this one can deduce that pure submodules of flat modules are flat.
- Suppose C is flat. Then B is flat if and only if A is flat.
If [math]\displaystyle{ 0 \longrightarrow A\,\ \stackrel{f}{\longrightarrow}\ B\,\ \stackrel{g}{\longrightarrow}\ C \longrightarrow 0 }[/math] is pure-exact, and F is a finitely presented R-module, then every homomorphism from F to C can be lifted to B, i.e. to every u : F → C there exists v : F → B such that gv=u.
References
- ↑ For abelian groups, this is proved in (Fuchs 2015)
- Fuchs, László (2015), Abelian Groups, Springer Monographs in Mathematics, Springer, ISBN 9783319194226
- Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, Berlin, New York: Springer-Verlag, ISBN 978-0-387-98428-5
Original source: https://en.wikipedia.org/wiki/Pure submodule.
Read more |