q-theta function

From HandWiki

In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [1][2] It is given by

θ(z;q):=n=0(1qnz)(1qn+1/z)

where one takes 0 ≤ |q| < 1. It obeys the identities

θ(z;q)=θ(qz;q)=zθ(1z;q).

It may also be expressed as:

θ(z;q)=(z;q)(q/z;q)

where () is the q-Pochhammer symbol.

See also

References

  1. Gasper, George; Rahman, Mizan (2004). Basic Hypergeometric Series. doi:10.1017/CBO9780511526251. ISBN 9780521833578. 
  2. Spiridonov, V. P. (2008). "Essays on the theory of elliptic hypergeometric functions". Russian Mathematical Surveys 63 (3): 405–472. doi:10.1070/RM2008v063n03ABEH004533. Bibcode2008RuMaS..63..405S.