Quantum dilogarithm

From HandWiki

In mathematics, the quantum dilogarithm is a special function defined by the formula

ϕ(x)(x;q)=n=0(1xqn),|q|<1

It is the same as the q-exponential function eq(x).

Let u,v be "q-commuting variables", that is elements of a suitable noncommutative algebra satisfying Weyl's relation uv=qvu. Then, the quantum dilogarithm satisfies Schützenberger's identity

ϕ(u)ϕ(v)=ϕ(u+v),

Faddeev-Volkov's identity

ϕ(v)ϕ(u)=ϕ(u+vvu),

and Faddeev-Kashaev's identity

ϕ(v)ϕ(u)=ϕ(u)ϕ(vu)ϕ(v).

The latter is known to be a quantum generalization of Rogers' five term dilogarithm identity.

Faddeev's quantum dilogarithm Φb(w) is defined by the following formula:

Φb(z)=exp(14Ce2izwsinh(wb)sinh(w/b)dww),

where the contour of integration C goes along the real axis outside a small neighborhood of the origin and deviates into the upper half-plane near the origin. The same function can be described by the integral formula of Woronowicz:

Φb(x)=exp(i2πlog(1+etb2+2πbx)1+etdt).

Ludvig Faddeev discovered the quantum pentagon identity:

Φb(p^)Φb(q^)=Φb(q^)Φb(p^+q^)Φb(p^),

where p^ and q^ are self-adjoint (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation

[p^,q^]=12πi

and the inversion relation

Φb(x)Φb(x)=Φb(0)2eπix2,Φb(0)=eπi24(b2+b2).

The quantum dilogarithm finds applications in mathematical physics, quantum topology, cluster algebra theory.

The precise relationship between the q-exponential and Φb is expressed by the equality

Φb(z)=Ee2πib2(eπib2+2πzb)Ee2πi/b2(eπi/b2+2πz/b),

valid for Imb2>0.

References

  • Faddeev, L. D. (1994). "Current-Like Variables in Massive and Massless Integrable Models". arXiv:hep-th/9408041.
  • Faddeev, L. D. (1995). "Discrete Heisenberg-Weyl group and modular group". Letters in Mathematical Physics 34 (3): 249–254. doi:10.1007/BF01872779. Bibcode1995LMaPh..34..249F. 
  • Faddeev, L. D.; Kashaev, R. M. (1994). "Quantum dilogarithm". Modern Physics Letters A 9 (5): 427–434. doi:10.1142/S0217732394000447. Bibcode1994MPLA....9..427F. 
  • Schützenberger, M. P. (1953). "Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x)F (y)". Comptes Rendus de l'Académie des Sciences de Paris 236: 352–353.