Racetrack principle

From HandWiki

In calculus, the racetrack principle describes the movement and growth of two functions in terms of their derivatives.

This principle is derived from the fact that if a horse named Frank Fleetfeet always runs faster than a horse named Greg Gooseleg, then if Frank and Greg start a race from the same place and the same time, then Frank will win. More briefly, the horse that starts fast and stays fast wins.

In symbols:

if [math]\displaystyle{ f'(x)\gt g'(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math], and if [math]\displaystyle{ f(0)=g(0) }[/math], then [math]\displaystyle{ f(x)\gt g(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math].

or, substituting ≥ for > produces the theorem

if [math]\displaystyle{ f'(x) \ge g'(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math], and if [math]\displaystyle{ f(0)=g(0) }[/math], then [math]\displaystyle{ f(x) \ge g(x) }[/math] for all [math]\displaystyle{ x \ge 0 }[/math].

which can be proved in a similar way

Proof

This principle can be proven by considering the function [math]\displaystyle{ h(x) = f(x) - g(x) }[/math]. If we were to take the derivative we would notice that for [math]\displaystyle{ x\gt 0 }[/math],

[math]\displaystyle{ h'= f'-g'\gt 0. }[/math]

Also notice that [math]\displaystyle{ h(0) = 0 }[/math]. Combining these observations, we can use the mean value theorem on the interval [math]\displaystyle{ [0, x] }[/math] and get

[math]\displaystyle{ 0 \lt h'(x_0)= \frac{h(x)-h(0)}{x-0}= \frac{f(x)-g(x)}{x}. }[/math]

By assumption, [math]\displaystyle{ x\gt 0 }[/math], so multiplying both sides by [math]\displaystyle{ x }[/math] gives [math]\displaystyle{ f(x) - g(x) \gt 0 }[/math]. This implies [math]\displaystyle{ f(x) \gt g(x) }[/math].

Generalizations

The statement of the racetrack principle can slightly generalized as follows;

if [math]\displaystyle{ f'(x)\gt g'(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math], and if [math]\displaystyle{ f(a)=g(a) }[/math], then [math]\displaystyle{ f(x)\gt g(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math].

as above, substituting ≥ for > produces the theorem

if [math]\displaystyle{ f'(x) \ge g'(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math], and if [math]\displaystyle{ f(a)=g(a) }[/math], then [math]\displaystyle{ f(x) \ge g(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math].

Proof

This generalization can be proved from the racetrack principle as follows:

Consider functions [math]\displaystyle{ f_2(x)=f(x+a) }[/math] and [math]\displaystyle{ g_2(x)=g(x+a) }[/math]. Given that [math]\displaystyle{ f'(x)\gt g'(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math], and [math]\displaystyle{ f(a)=g(a) }[/math],

[math]\displaystyle{ f_2'(x)\gt g_2'(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math], and [math]\displaystyle{ f_2(0)=g_2(0) }[/math], which by the proof of the racetrack principle above means [math]\displaystyle{ f_2(x)\gt g_2(x) }[/math] for all [math]\displaystyle{ x\gt 0 }[/math] so [math]\displaystyle{ f(x)\gt g(x) }[/math] for all [math]\displaystyle{ x\gt a }[/math].

Application

The racetrack principle can be used to prove a lemma necessary to show that the exponential function grows faster than any power function. The lemma required is that

[math]\displaystyle{ e^{x}\gt x }[/math]

for all real [math]\displaystyle{ x }[/math]. This is obvious for [math]\displaystyle{ x\lt 0 }[/math] but the racetrack principle is required for [math]\displaystyle{ x\gt 0 }[/math]. To see how it is used we consider the functions

[math]\displaystyle{ f(x)=e^{x} }[/math]

and

[math]\displaystyle{ g(x)=x+1. }[/math]

Notice that [math]\displaystyle{ f(0) = g(0) }[/math] and that

[math]\displaystyle{ e^{x}\gt 1 }[/math]

because the exponential function is always increasing (monotonic) so [math]\displaystyle{ f'(x)\gt g'(x) }[/math]. Thus by the racetrack principle [math]\displaystyle{ f(x)\gt g(x) }[/math]. Thus,

[math]\displaystyle{ e^{x}\gt x+1\gt x }[/math]

for all [math]\displaystyle{ x\gt 0 }[/math].

References

  • Deborah Hughes-Hallet, et al., Calculus.