Radó's theorem (Riemann surfaces)
From HandWiki
Short description: Theorem in complex analysis
In mathematical complex analysis, Radó's theorem, proved by Tibor Radó (1925), states that every connected Riemann surface is second-countable (has a countable base for its topology).
The Prüfer surface is an example of a surface with no countable base for the topology, so cannot have the structure of a Riemann surface.
The obvious analogue of Radó's theorem in higher dimensions is false: there are 2-dimensional connected complex manifolds that are not second-countable.
References
- Hubbard, John Hamal (2006), Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, ISBN 978-0-9715766-2-9, http://matrixeditions.com/TeichmullerVol1.html
- Radó, Tibor (1925), "Über den Begriff der Riemannschen Fläche", Acta Szeged 2 (2): 101–121, http://acta.fyx.hu/acta/home.action?noDataSet=true
Original source: https://en.wikipedia.org/wiki/Radó's theorem (Riemann surfaces).
Read more |